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Abstract

Graph cut methods have evolved to a well-investigated and acknowledged method in computer
vision. They have successfully been applied to a great variety of applications such as medical
image processing, image restoration and segmentation, and many more. Many problems in
computer vision arise from the need of determining the maximum a posteriori estimate in a
stochastic Markov random field model, which in fact is equivalent to minimizing some energy
function. These energies incorporate on the one hand the deviation from observed data and on
the other hand the smoothness characteristics of the solution.

For a certain type of energy functions, graph cuts provide a novel way to exactly infer the
maximum a posteriori estimate by computing a minimum cut. The energies are modeled as flow
networks and due to the important max-flow-min-cut theorem the minimum cut can be found
efficiently by computing the maximum flow. However, as soon as such energy function increases
in complexity, either by extending the range of labels (multilabel problem) or by adding complex
interaction potentials, the problem of inferring the exact MAP estimate becomes NP-hard.

Especially the subject of image denoising, which is the reconstruction of an image that has
been degraded by noise, has received extensive attention from the image analysis community.
Several continuous regularization methods for denoising have been proposed. In the course of
this work we investigate the applicability of graph cut methods and approximations for image
denoising. In particular, we study discrete forms of first-order regularization models. Moreover,
on the basis of test images which were artificially degraded by (e.g. Gaussian) noise we conduct
a series of experiments with known graph constructions and show that even complex energy
functions can be approximated with sufficient quality.
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Kurzfassung

Graph Cut basierte Methoden wurden in den letzten Jahren zu einem gut erforschten und aner-
kannten Verfahren im Bereich Computer Vision entwickelt. Eine Vielzahl von Anwendungen in
den Bereichen medizinische Bildverarbeitung, Bildrestaurierung und Bildsegmentierung wur-
den erfolgreich auf Basis des Verfahrens umgesetzt.

Üblicherweise werden Probleme im Umfeld der Bildverarbeitung als stochastische Markov
Random Field Modelle formuliert um aussagekräftige Schlüsse über verborgene Information
ziehen zu können. Die Inferenz in solchen Modellen ist äquivalent zur Minimierung einer Ener-
giefunktion, welche einerseits die Abweichung einer Lösung zu den beobachteten Daten und
andererseits die Gleichmäßigkeit der Lösung wiederspiegelt.

Gewisse Klassen von Energiefunktionen können mit Graph Cut Methoden exakt minimiert
werden sofern die Energiefunktion in einem Graphen repräsentiert werden kann. Auf Grund der
berühmten Max-Flow-Min-Cut Äquivalenz kann ein minimaler Schnitt effizient mittels maxi-
malen Fluss in einem Fluss Netzwerken berechnet werden. Leider können nur sehr einfache
Energiefunktionen exakt in polynomieller Zeit minimiert werden.

Besondere Aufmerksamkeit hat die Aufgabe des Entrauschens von Bildern eingenommen.
Hierbei wird versucht ein durch Rauschen gestörtes Bild so gut als möglich wiederherzustellen.
Im Zuge dieser Arbeit untersuchen wir die Anwendbarkeit von Graph Cut Methoden hinsicht-
lich verschiedener konvexer Regularisierungsmodelle erster Ordnung und führen für eine ausge-
wählte Anzahl an diskreten Energien Experimente auf Basis von künstlich verrauschten Bildern
durch. Aufgrund der Komplexität der vorgestellten Modelle können diese nur approximiert wer-
den. Jedoch sind die gewonnenen Ergebnisse von ausreichender Qualität.
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CHAPTER 1
Introduction

1.1 Motivation

Over the last years, graph cut methods have evolved to a well-investigated and established
method in computer vision. Graph cuts have successfully been applied to a great variety of
applications such as medical image processing, image restoration and segmentation, and many
more.1 Frequently, these problems are posed as abstract classification or (pixel) labeling prob-
lems in which one has to assign each object a label with the objective of minimizing the total
assignment cost.

Many problems in computer vision arise from the need of determining the maximum a pos-
teriori (MAP) estimate in a stochastic Markov random field (MRF) model, which in fact, is
equivalent to minimizing some energy function [84] that incorporates on the one hand the devia-
tion from an observed data, and on the other hand the smoothness characteristics of the solution.

For a certain type of discrete energy functions, graph cuts provide a novel way to exactly
infer the MAP estimate by computing a minimum cut [25, 30, 56, 76]. The energies are mod-
eled as the capacities of a flow network and due to the important max-flow-min-cut theorem
[40, 41] the minimum cut can be found efficiently by computing the maximum flow. Several
(strongly) polynomial-time algorithms have been proposed for computing the maximum flow
and equivalently the minimum cut.2

However, as soon as such an energy function increases in complexity, either by extending the
range of labels (multilabel problem) or by adding complex interaction potentials, the problem of
inferring the exact MAP estimate becomes NP-hard [19, 76]. Nevertheless, several approxima-
tions have been proposed [19, 22, 63, 66, 72, 83].

1We refer the reader to Szeliski et al. [109] for a recent survey on methods for energy minimization in computer
vision and http://vision.middlebury.edu/, which lists the current benchmark results.

2See e.g. Goldberg and Tarjan [49] for a survey.
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1.2 Problem Statement

However, especially the subject of image denoising, which is the reconstruction of an image
that has been degraded by noise, has received extensive attention from the image analysis com-
munity. Several continuous regularization methods for denoising have been proposed. In the
course of this work, we investigate the applicability of graph cuts for image denoising. Special
attention will be given to continuous regularization functionals and in particular the applicability
of graph cut methods to anisotropic first-order regularization will be examined. We establish
finite-dimensional discrete forms of the continuous regularization functionals and discuss the
applicability of known graph constructions. Moreover, experimental results are presented.

1.3 Previous and Related Work

Historically, the labeling problem was first considered by Stone [108] in the context of dis-
tributed computing, where computational tasks had to be scheduled for computation on multiple
processors. For two labels, Stone computed the global minimum of the cost function with a
graph cut. In a first application in the context of image processing, Greig et al. [50] successfully
reduced the problem of image denoising of black and white images to the minimum cut problem.
Almost ten years later, Boykov et al. [19] further investigated graph cuts and approximations.
Moreover, Kleinberg and Tardos [65] were the first to give a context-independent formulation
of the problem and developed several approximation algorithms based on linear program relax-
ations and randomized rounding schemes. Later, Veksler [111] and Boykov et al. [20, 21, 22]
developed further graph cut-based approximations: the expansion algorithm and the swap algo-
rithm.

In their work, Kolmogorov and Zabih [75, 76] stated a necessary and sufficient condition for
the exact minimization of Boolean energy functions arising from first- and second-order Markov
Random Fields. Later, Freedman and Drineas [42], Freedman and Turek [44] gave an algebraic
characterization of the results of Kolmogorov and Zabih, established the connection to pseudo-
Boolean functions, and further extended the class of energy functions which can be minimized
exactly in polynomial time. Pseudo-Boolean functions appear in combinatorial optimization and
have been studied for more than fifty years [11, 28, 61, 91].

For a linearly ordered label set, Ishikawa [56] and Darbon [30] showed how to exactly com-
pute the minimum of energy functions with convex, and with submodular pairwise interaction
terms, respectively. Recently, Charpiat [25] suggested a graph construction which strictly ex-
tends the class of functions which can be minimized exactly via graph cuts and for the first time
includes some nonsubmodular energies.

Lempitsky et al. [83] later generalized the approximations by Boykov et al. [22] to fusion
moves. Moreover, Kolmogorov and Rother [72] and Rother et al. [98, 99] investigated a method
from the domain of (quadratic) pseudo-Boolean function minimization, the so called roof du-
ality, which allows the computation of a partially optimal solution in case of nonsubmodular
functions and proved useful in many applications (e.g. Woodford et al. [117]). The concept was
introduced by Hammer et al. [52] and has been known for quite some time. Aside from linear
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programming-based methods, Boros et al. [12]3 proposed a network flow-based method, the so
called BHS algorithm4, for efficiently computing such a partial solution.

Applications

As graph cut methods have gained great attention over the last years, the number of publications
in journals and conference proceedings raised to a tremendous level.5 However, we give a brief
overview of its main applications.

One of the earliest problems in computer vision which was approached with graph cuts is
the task of image restoration [5, 22, 30, 50, 60, 111, 119]. The goal is to restore an image which
was somehow degraded. If the corruption is just by noise, we speak of image denoising, which
is the main area of applications of graph cuts. Other restoration problems aside from denoising
are image deblurring and inpainting, which are not considered here.

The task of image segmentation [9, 14, 15, 17, 27, 37–39, 51, 58, 77, 95, 97, 107, 112, 114,
118] is to partition a given image into segments such as foreground and background, or more
generally into multiple (disjunct) segments such as objects visible in an image.

Stereo and multiview reconstruction [8, 19, 22, 59, 64, 71, 73, 74, 74, 100, 102, 111] aim
at determining the correspondence between pixels in multiple images. For instance, in the two-
camera stereo problem one needs to find the correspondence between pixels in a static scene
taken from two horizontally shifted cameras. Then, a 3D model can be constructed from the
correspondence.

Another major task is motion estimation [22, 26, 43, 82, 83, 115] which for instance is used
to estimate an optical flow, i.e. the pixel movements, in a sequence of images. The difference to
stereo or multiview reconstruction is that in general both the camera and the objects may move
within a sequence of images.

Moreover, we shall mention successful graph cut applications in texture synthesis [79] and
digital photomontage [1, 96]. In texture synthesis one needs to pursue the structures of a texture
for instance to fill up missing or deleted parts of an image. Digital photomontage includes for
instance the task of stitching multiple images such that the boundaries are as smooth as possible.

1.4 Contribution

In the course of this work, a literature study on the topic of graph cut methods, the theoretic foun-
dations, and its applications is done. Then, continuous first-order regularization functionals for
denoising are brought into a finite-dimensional discrete form and, moreover, we investigate the
applicability of the discussed graph cut methods. Special attention will be given to anisotropic

3Unfortunately, we were not able to obtain the original publication. However, the main concepts are covered by
Boros and Hammer [11].

4Often this method is incorrectly referred to as quadratic pseudo-Boolean optimization (QPBO), which rather
denotes the methods used for the minimization/maximization of pseudo-Boolean functions of degree at most two.
According to Blake et al. [10] the term BHS algorithm is more appropriate.

5A great variety of publications can be found at http://www.cvpapers.com/ and http://muq.org/
~cynbe/vtopics.html#Graph_Cut.
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first-order regularization. Finally, we present and discuss experimental results obtained by an
implementation based on existing libraries.

1.5 Structure of the Thesis
The remainder of this thesis is structured as follows. In Chapter 2, we introduce basic image and
noise models. Moreover, we discuss the relation between maximum flows and minimum cuts
in flow networks. Chapter 3 is devoted to Markov random fields and the Bayesian justification
of energy minimization. In Chapter 4, we present the standard graph construction for the min-
imization of MRF energies, approximation algorithms, and extensions. Moreover, we discuss
continuous total variational methods for image denoising, investigate the applicability of graph
cuts, and in Chapter 5 we present our experimental results. Chapter 6 concludes this thesis.

1.6 Notational Conventions
B The set {0, 1}.
N The set of natural numbers.
R The set of reals.
Jn An n⇥ n matrix of ones.
VERTEX COVER A problem or formal language.
P, NP Complexity classes.
G A graph.
V The set of vertices/nodes.
E The set of edges/arcs.
c(u, v) The capacity of an edge {u, v} 2 E or arc (u, v) 2 E .
c(S, T ) The capacity of a cut (S, T ), where S, T ⇢ V .
⌦ The image area.
nx The number of horizontal nodal points.
ny The number of vertical nodal points.
u An intensity function of a continuous image defined on ⌦.
ru The gradient of u.
u A matrix of a discrete image.
ux, uy The discrete gradients of a discrete image u along x and y.
X A vector of hidden variables in a Markov random field.
Z A vector of observation variables in a Markov random field.
x A vector of realizations of X.
z A vector of realizations of Z.
xc The transition function in move-making algorithms.
L The space of labels (label set).
�i Unary energy potential of variable xi.
 ij Pairwise energy potential of related variables xi, xj .
 C Energy potential of a clique C of variables.
↵ The regularization parameter.

4



CHAPTER 2
Preliminaries

2.1 Image and Noise Models

In this section, we introduce discrete (digitized) and continuous images. Moreover, we describe
noise models, which account for various types of errors in the recorded images. Most important
for our considerations are errors in intensity, which often result from noise interfering with image
sensors in digital cameras or scanners.

Discrete Images

In this subsection, we will establish a basic model of discrete and continuous images as in
Scherzer et al. [103].

Let h > 0 and let nx, ny 2 N. A two-dimensional discrete image of the size nx ⇥ ny is
given as a matrix u = (uij)(i,j)2I1 , where

uij 2 R, (i, j) 2 I1 := {1, . . . , nx}⇥ {1, . . . , ny}.

The values uij are the intensity values at the nodal points xij = (ih, jh), where (i, j) 2 I1.
These nodal points are aligned along a rectangular pixel grid x = (xij), which is assumed to be
regular. The parameter h controls the resolution of a discrete image, which is the horizontal and
vertical distance between the pixels xij . Figure 2.1 illustrates the described setting (taken from
Scherzer et al. [103]).

In addition, let us assign to every pair

(i, j) 2 I2 := {1, . . . , nx � 1}⇥ {1, . . . , ny � 1}

the discrete gradient vij of u at node xij defined as

vij :=
1

h

✓
ui+1,j � uij

ui,j+1 � uij

◆
:=

✓
ux

uy

◆
.
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Figure 2.1: A regular pixel grid with nodal points xij = (ih, jh).

The gradient is a measure for the change in intensity along the directions of x and y.
In contrast, a continuous image is given by its intensity function u : ⌦! R, where

⌦ := (0, (nx + 1)h)⇥ (0, (ny + 1)h)

is the image area. It is noteworthy that ⌦ is chosen such that the entire pixel grid x is contained
in ⌦. The gradient of a continuous image u is denoted by

ru :=

 
@u
@x
@u
@y

!
.

In the course of this work we will deal only with discrete images and thus approximate the
continuous gradientru by the discrete gradient.

Noise Models

In this subsection, we discuss various noise models which characterize the distortions arising
from image recording. Often, noise origins from image sensors or analog-to-digital converters
in cameras or scanners and results in different type of distortions.

Most important for our purpose are errors in intensity, which manifest in a local character.
It is assumed that the observed errors are realizations of independent and identically distributed
(i.i.d.) random variables. Another form of distortion are sampling errors, where the observed
error also depends on the intensity of the surrounding area.

Intensity Errors

The most basic noise model regarding errors in intensity is additive noise. Given a discrete
image u and an nx ⇥ ny matrix � = (�ij)(i,j)2I1 of realizations of i.i.d. random variables, we

6



speak of additive intensity errors if the recorded or observed data are

u� = u+ �.

In case that the random variables obey a Gaussian distribution, u� is said to contain Gaus-
sian intensity errors. For instance, thermal noise is Gaussian white noise, i.e. independently
distributed additive noise with zero mean and variance �2 [116]. Other common distributions
used in additive noise models are Laplacian and Poisson distributions.

Moreover, if the noise cannot be described by the above additive model but as a function �
of the original image u, the observed data is stated as

u� = �(u).

Prominent noise models which employ such functional dependencies are Poisson noise and Salt
& Pepper noise. The former is used to model photon counting errors produced by charge-
coupled device (CCD) sensors, where �ij(uij) denotes the number of photons detected and is
treated as the realization of a Poisson distributed random variable with mean uij . The latter
assumes that there exists a lower bound cmin and an upper bound cmax on the values of u such
that cmin  uij  cmax. Then, Salt & Pepper noise sets the intensity of each pixel uij to one of
{cmin, uij , cmax} according to some probability distribution defined on this set.

Figure 2.2 illustrats (artificial) additive Gaussian noise (2.2(b)), Poisson noise (2.2(c)), and
Salt & Pepper noise (2.2(d)) applied to a greyscale image (2.2(a)).

Example 1. Consider for instance the discrete 8-bit greyscale image in Figure 2.2(d). Then,
cmin = 0 corresponds to the color black and cmax = 255 corresponds to white. The depicted
image has been degraded by Salt & Pepper noise such that for each pixel the original intensity
uij is replaced by the colors black or white with probability 0.1.

2.2 Network Flows and Minimum s-t Cuts

In this section, we give a brief introduction to networks flows, cuts, and algorithms for the
efficient computation.

A very broad class of problems can be modeled as a transportation or flow network. Infor-
mally, such a network carries some kind of “traffic” via its nodes and arcs from a defined source
“producing” the traffic to a defined sink “consuming” it. In addition, the transportation network
consists of intermediate nodes acting as “switches” passing the traffic to adjacent nodes. Each
arc is associated with a certain capacity limiting the maximum amount of traffic being forwarded
to its incident node. For a better understanding, imagine for example a pipeline or highway net-
work. For simplicity it is assumed that the source has unlimited supply and the sink is able to
absorb an unlimited amount of traffic. In the following, we give a precise formulation of the
described setting.

Definition 1. A graph is an ordered pair G = (V, E), where V denotes a set of nodes and E is a
collection of edges.

7



(a) Original image. (b) Gaussian noise (µ = 0,� =
0.01).

(c) Poisson noise. (d) Salt & Pepper noise (p = 0.1).

Figure 2.2: Corrupted grayscale images.

We speak of an undirected graph G = (V, E) if the elements in E are two-element subsets of
V: {u, v} for some u, v 2 V . Conversely, a directed graph G = (V, E 0) consists of nodes V and
arcs (or directed edges) E 0 ✓ V ⇥ V . The elements in E 0 are ordered pairs (u, v).

Definition 2. A flow network (G, c) is a directed graph G = (V, E) where a nonnegative capacity
c(u, v) � 0 is associated with each arc (u, v) 2 E .

Furthermore, V contains two special nodes: a source s and a sink t, also referred to as
terminals. Node s is the source of all “traffic” whereas node t consumes it. Therefore, we
require that no arc enters the source and no arc leaves the sink. To yield a valid flow network,
we demand that every node v 2 V is on some path from s to t and no path of infinite capacity
exists from s to t. Finally, we disallow loops, i.e. (u, u) 62 E . Figure 2.3 depicts a simple flow
network with four nodes and five arcs and capacities written next to the arcs.

Definition 3. An s-t flow1 in a network (G, c) is a function f : V ⇥ V ! R+ that satisfies the
following two constraints:

1We will use the terms s-t flow and flow synonymously since s-t flows are the only flows we are interested in.
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Figure 2.3: A flow network.

a) (capacity constraint) for every pair u, v 2 V ,

0  f(u, v)  c(u, v). (2.1)

b) (flow conservation) for each node u 2 V \ {s, t},
X

v2V
f(v, u) =

X

v2V
f(u, v). (2.2)

The first constraint ensures that the flow on every arc is nonnegative and within the corre-
sponding capacity. The second constraint states that, except for the source and the sink, all flow
must be forwarded. In other words, intermediate nodes can neither “store” nor “create” flow.
Thus, it is quite natural to ask for the amount of flow carried by a network.

Definition 4. The value |f | of a flow f is defined as

|f | =
X

v2V
f(s, v). (2.3)

An immediate question is to determine the maximum amount of flow that can be sent trough
a given flow network, which leads to the MAXIMUM-FLOW problem:

Instance: A flow network (G, c) with a single source s and a single sink t.
Question: What is the maximum feasible flow f in G from s to t?

Ford and Fulkerson [41] were the first to publish an algorithm based on augmenting paths,
which runs in time O(|E| · max|f |). Several other (strongly) polynomial-time algorithms and
variations thereof such as the Preflow-Push Algorithm, which takes time O(|V|2 · |E|), exist to
compute a maximum flow. Various improvements have been made to these algorithms.2

It is easy to see that the sum of the capacities of the arcs leaving the source and the sum of
the capacities of the arcs entering the sink are trivial upper bounds for the maximum flow that

2We refer to Ahuja et al. [2] for the general topic of network flows.
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can be sent along a network. However, the max-flow min-cut theorem states that the maximum
flow is equal to the capacity of a minimum cut. In order to formulate the important theorem we
first need to introduce the notion of an s-t cut:

Definition 5. An s-t cut3 (S, T ) of a flow network (G, c) is a partition of the vertices V into S

and T = V \ S such that s 2 S and t 2 T . The capacity or cost c(S, T ) of a cut (S, T ) is
defined as

c(S, T ) =
X

u2S

X

v2T
c(u, v). (2.4)

A minimum cut of a network G is a cut whose capacity is the minimum among all cuts of
the network. It is easy to see that by deleting all edges directed from S to T the terminals get
disconnected. For convenience, we call this set {(u, v) 2 E | u 2 S, v 2 T} the cut-set. We are
now ready to state the important theorem proved independently by Elias et al. [40], and by Ford
and Fulkerson [41]:

Theorem 1 (Max-flow Min-cut). In every flow network, the maximum value of a flow is equal
to the minimum capacity of a cut.

The importance of the equivalence lies in the ability to efficiently find a minimum cut of a
network by computing the maximum flow. We shall point out that other (efficient) algorithms
exist for finding minimum cuts.

3In the following we will use the terms s-t cut, graph cut, and cut synonymously since we only consider single
source and a single sink flow networks.
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CHAPTER 3
Markov Random Fields

In this chapter, we discuss one of the fundamental stochastic models used in computer vision,
namely Markov Random Fields (MRF). They provide a convenient way for modeling image
properties with contextual constraints with the primary goal of making inferences about im-
ages. Its applications range from image reconstruction and denoising to image segmentation,
3D vision, and object labeling. Moreover, MRFs provide insight into the computational aspect
of deriving the joint probability of an image and of inferring the Maximum a Posterior (MAP)
estimate given some observation. In this chapter we develop a Bayesian justification for energy
minimization in order to derive the MAP estimate. Under certain conditions, these energies can
then be minimized or approximated efficiently with graph cut methods as we will see.

3.1 Hidden Markov Models

An important concept are the so called Hidden Markov Models (HMM), which basically consist
of n hidden random variables denoted by a vector X = (Xi)1in. These variables account for
observable quantities (e.g. in image analysis the intensity measured at some pixel) but cannot
directly be observed. The fundamental idea is to assume that the observations or measurements
z = (zi)1in are realizations of random variables Z = (Zi)1in themselves. In this way,
the model incorporates measurement errors produced by sensors, etc. However, we make the
assumption that our random variables are discrete and take values from the finite discrete set L.
We denote by

P (Z = z | X = x) (3.1)

the conditional probability, often referred to as the likelihood, of observing z provided that the
hidden variables are in state x. The observation variables are now conditioned by the hidden
variables. In the following, we will use for better readability x to denote the event X = x and
P (x) to denote the probability P (X = x) of the event. Informally, we will also refer to x as a
configuration or labeling of the hidden variables X.
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For discrete HMMs with a finite set of possible observations, Rabiner [93] formulates three
basic problems of interest for real-world applications. Probably the most interesting one for us
is an inference problem and asks for the most likely instantiation of the hidden variables X after
having observed z. In terms of probability, we want to find a realization x that maximizes the
posterior probability P (x | z). Bayes’ formula allows to compute the posterior probability as

P (x | z) = P (z | x)P (x)

P (z)
, (3.2)

where P (x) is called the prior probability. The prior captures the probability of the event of
the hidden variables being in state x without any further knowledge and solely depends on the
mutual dependence between the hidden variables. After having observed z we can ignore the
denominator P (z) for optimization and the problem reduces to finding the realization x̂ which
maximizes

P (x | z) / P (z | x)P (x), (3.3)

which is referred to as the maximum a posteriori (MAP) estimate.
For tractability reasons, the likelihood function is commonly assumed to arise from a product

distribution of the form [6]
P (z | x) =

Y

i

P (zi | xi). (3.4)

This simplification implies the independence between the variables Z and allows the direct ap-
plication of noise models as discussed in Section 2.1.1 Note that the conditional dependency
between the hidden variables still remains. Figure 3.1 illustrates the described.

X1 X2 Xn

Z1 Z2 Zn

Figure 3.1: A (first-order) hidden Markov model.

3.2 Markov Random Fields
In the previous section, we have seen the relation between hidden variables and observations
in (very simple) hidden Markov models. In this section, we will go into further detail and dis-
cuss the basics of Markov random fields, a crucial theoretical result—the Hammersley-Clifford
theorem—which allows the efficient computation of the prior P (x), and show how to exploit the
conditional dependencies between the hidden variables to determine the Maximum a Posterior
estimate.

The underlying idea of Markov random fields is to represent the conditional dependencies
between hidden variables and groups thereof in an image graph G = (V, E). The set of nodes

1We refer the reader to Scherzer et al. [103, Sec. 2.6] and Li [84, Sec. 1.3] for examples.
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V = {1, . . . , n} corresponds to the (unordered) set of pixels, which in the simplest case arises
from a consecutive numbering of n = nx ⇥ ny nodal points in a regular grid. For a better
understanding of the described consider Figure 3.2. The set E is the set of (undirected) edges.
An edge {u, v} 2 E , where u, v 2 V , indicates a mutual relation between the pixels u and v. For
instance, edges may indicate mutual neighborship between pixels next to each other in a regular
grid.

7 8 9

4 5 6

1 2 3

(a)

7 8 9

4 5 6

1 2 3

(b)

Figure 3.2: Graphs for Markov models representing image data. Figures 3.2(a) and 3.2(b) depict
a regular 4-connected and a regular 8-connected pixel graph, respectively.

Above, we have already given an intuitive definition of the notion of neighborhood in a graph
G. We define it more precisely as follows:

Definition 6 (Li [84]). A neighborhood system on the set V of nodes is defined as

N := {Nv | v 2 V},

where each Nv ⇢ V denotes the neighboring nodes of v, i.e. u 2 Nv , {u, v} 2 E , and fulfills
the following two properties:

1. v 62 Nv (i.e. a node is not a neighbor of itself), and

2. v 2 Nu , u 2 Nv (i.e. the relationship it is mutual).

Moreover, if C is a subset of V , we define xC := (xv)v2C . It is convenient to define the
following:

Definition 7 (Li [84]). A clique C for (V,N ) is a subset of V . It consists of either a single
node C = {v}, a pair of neighboring nodes C = {v, v0}, a triple of neighboring nodes C =
{v, v0, v00}, and so on.

Consequentially, we denote by C the set of all cliques in G. For instance, the image graphs
depicted in Figures 3.2(a) and 3.2(b) contain cliques of size at most two and three, respectively.

Let us now introduce the central concept of this section.

Definition 8 (Li [84]). A vector of random variables X is said to be a Markov random field
(MRF) on V w.r.t. a neighborhood system N on V if and only if the following two conditions
hold:

13



1. P (x) > 0 for all possible realizations x, and

2. P (xv | xV\{v}) = P (xv | xNv) for all v 2 V .

The first condition is introduced for pure technical reasons. The second condition is referred
to as the Markovian property and captures the local characteristics of a Markov random field.
It states that the probability of the event Xv = xv given the instantiations of all other hidden
variables is equal to the probability given only the realizations of its direct neighbors. We will
see that this property will be useful to quantify the prior distribution P (x). Figure 3.3 depicts a
section of a Markov random field model. The conditional dependencies are drawn as undirected
edges.

Finally, the order of a MRF is defined as the size of the largest clique minus one.

X1

X2 X3

X4

Z1

Z2 Z3

Z4

Figure 3.3: Section of a Markov random field.

Inferring the Maximum a Posterior Estimate

Recall from Section 3.1 that, given some observations z, the Maximum a Posterior (MAP) esti-
mate x̂ gives the most likely explanation for the measurements z and can be derived as

x̂ = argmax
x

P (z | x)P (x), (3.5)

where the likelihood function is modeled as before. The question of defining the prior distribu-
tion still remains. By the definition of the neighborhood system the conditional dependencies are
cyclic (cf. Figure 3.3) and thus, the joint distribution is not straightforward to compute by fac-
torization. Fortunately, the Hammersley-Clifford theorem provides a convenient way to specify
it. Let us first define the following:

Definition 9 (Li [84]). A vector of random variables X is said to be a Gibbs random field
(GRF) on V w.r.t. a neighborhood system N if and only if the random variables obey values
from a Gibbs distribution, i.e.

P (x) :=
1

Z
e
�E(x)

, (3.6)

where Z is the partition function, a normalizing constant defined as Z :=
P

x e
�E(x), and

E(x) is some energy function.
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The energy function is defined as the sum

E(x) :=
X

C2C
 C(xC) (3.7)

of the clique potentials  C and runs over the set of all cliques C. Clearly, this sum can be
decomposed into sums over cliques of various sizes and the energy function can be written as

E(x) :=
X

C2C1

 1(xC) +
X

C2C2

 2(xC) +
X

C2C3

 3(xC) + . . . , (3.8)

where Ci denotes the set of cliques of size i > 0. We are now ready to state the following
important theorem.

Theorem 2 (Besag [6], Hammersley and Clifford [53]). X is a Markov random field on V w.r.t.
a neighborhood system N if and only if X is a Gibbs random field on V w.r.t. N .

The crucial consequence of this theorem is that the joint probability P (x) is explicitly given
in terms of the clique potential. Moreover, the energy function incorporates prior knowledge
about the model.

Equipped with this knowledge we can model the likelihood P (zi | xi) just as

P (zi | xi) := cie
��i(xi,zi), (3.9)

where ci is a normalizing constant and �i(xi, zi) describes the distance between the observation
zi and the value xi of the hidden variable. Earlier we assumed that the observation variables are
independent and thus, the likelihood P (z | x) can be written as a product distribution.

Based on this assumptions, it is common to directly state the posterior MRF in terms of the
energy potential such that the energy also depends on the measurements z. Thus, the posterior
can be written as

P (x | z) = 1

Z(z)
e
�E(x,z)

, (3.10)

where
E(x, z) =

X

C2C
 C(x) +

X

i

�i(xi, zi). (3.11)

Again, Z(z) is the partition function which, fortunately to us, is not needed for deriving the
Maximum a Posterior estimate. In fact, computing the partition function is even intractable in
case the model depends on additional parameters.

The Markov-Gibbs equivalence stated by the theorem and the above assumption allow the
inference of the maximum a posterior estimate x̂. Taking the logarithm of equation (3.10) yields

E(x, z) = � logP (x | z)� logZ(z) =
X

C2C
 C(xC) +

X

i

�i(xi, zi) (3.12)

and therefore
x̂ = argmax

x
P (x | z) = argmin

x
E(x, z). (3.13)
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Thus, the MAP estimate x̂ can be found by minimizing the energy function E(x, z).
Many problems in computer vision can be posed in terms of energy functions consisting only

of unary and pairwise terms (cf. the cliques in the image graph in Figure 3.2(a)). The energy can
then be written as

E(x, z) =
X

i2V
�i(xi, zi) +

X

(i,j)2E

 ij(xi, xj). (3.14)

The first term is referred to as the data term and accounts for the likelihood of xi having observed
zi. The second term is called prior or smoothness term and incorporates a priori knowledge
about the model without possessing any further information. Consider for instance the image
graph in Figure 3.2(a). Then, ij may be chosen such that random variables which are neighbors
are likely to take the same values.

In the following sections we will discuss several graph cut based algorithms for the exact
and approximative minimization of energy functions of the above form.

3.3 Conditional Random Fields
A special form of Markov random fields are the so called Conditional Random Fields (CRF),
which are used in speech and image analysis. Instead of modeling the posterior as a factorization
of the likelihood P (z | x) and the prior P (x) as before, the posterior is directly stated as

P (x | z) = 1

Z(z)
e
�E(x,z)

. (3.15)

Note that contrary to (3.10) in this model all terms in E may depend on the observations z.
This implicit form allows complex dependencies of x on z [10, 80]. Moreover, Li [84] argues
that the two main differences between MRFs and CRFs are the following. First, in a CRF the
unary potential �i is a function of all z not just of zi and of xi. Second, in a MRF the pairwise
potential  ij is independent of the observations whereas in a CRF the potential  ij(xi, xj , z) is
a function of z as well as of the realizations xi and xj [80].

Another noteworthy detail is that the order of a CRF is defined as the size of the largest
clique in contrast to the order of a MRF, where it is defined as the size of the largest clique
minus one [57].
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CHAPTER 4
Graph Cut Methods for Energy

Minimization

In this chapter, we discuss graph cut methods for the exact and approximative inference of the
MAP estimate in discrete Markov random fields. In fact, given some observations, for instance
a recorded image which has been degraded by noise, the MAP estimate can be derived by min-
imizing the Gibbs energy as we have seen in Chapter 3. We will focus on graph cut based
methods in discrete MRF models where the realizations of the random variables origin from a
discrete finite set L (e.g. the intensity values from a grayscale). In the remainder, L will be
referred to as the label set. Furthermore, we speak of a binary or Boolean MRF if the label set
is the set B and of a multilabel MRF if L contains more than two values.

Let us consider the general form of a first-order MRF energy function

E(x, z) =
X

i2V
�i(xi, zi) +

X

(i,j)2E

 ij(xi, xj), (4.1)

which can be written as a sum of unary and binary terms.1 Whilst�i does not affect the tractabil-
ity, the choice of  ij heavily affects the complexity of the resulting optimization problem. In
general, minimizing energy functions of the above form over a set of variables x with a finite
discrete domain L is NP-hard, even for the binary case (i.e. L := B) [75], as we will see.

Nevertheless, there exist families of energy functions that can be minimized exactly in poly-
nomial time. An important class are the so called submodular functions [45, 87], which are set
functions that correspond to energies in (not necessarily Boolean) Markov Random Fields. The
minimization of submodular functions has been known to be computable in polynomial time for
quite some time [62]. Submodular functions are related to convex continuous functions [86] and,
to the best of our knowledge, the fastest algorithm was suggested by Orlin [89] and is a strongly
polynomial-time combinatorial algorithm. Unfortunately, for imaging applications, where the
number of pixels tends to be huge, such general algorithms are highly impractical.

1Note that the variables z are fixed.
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Submodular Boolean Markov Random Field energies can be minimized in polynomial time
via graph cuts in an exact manner as shown by Kolmogorov and Zabih [76]. In an early ap-
plication, Greig et al. [50] inferred the exact maximum a posteriori probability estimate of a
degraded black and white image and thereby introduced graph cuts to the field of computer vi-
sion. Since then, many practical extensions, for instance to multilabel MRFs, have been made
(e.g. see [19, 21, 30, 56, 66]).

The structure of this chapter is as follows. In Sections 4.1 and 4.2 we present pseudo-
Boolean and submodular functions since both are directly related to MRF energies. Then, in
Section 4.3 we describe the basic idea of using graph cuts for energy minimization. Moreover,
in Sections 4.4 and 4.5, we discuss families of MRF energy functions which can be minimized
exactly or at least can be approximated with graph cuts. Finally, Sections 4.6 and 4.7 describe the
advances in minimizing nonsubmodular energy functions and briefly discuss energy functions
with terms that depend on more than two variables.

4.1 Pseudo-Boolean Functions
So far, we have discussed energy functions with a finite discrete labelset L. In this section, we
restrict ourselves to functions over variables with a Boolean domain and introduce the so called
Pseudo-Boolean Functions (PBF):

Definition 10 (Boros and Hammer [11]). A mapping f : Bn ! R is called pseudo-Boolean
function.2

As with MRF energies we are interested in the optimization problem3, i.e.

x̂ = argmin
x2Bn

f(x). (4.2)

Let us consider a simple example:

Example 2. For instance, consider the function f : B2 ! R defined as

f(x1, x2) := 4x1 � 2x2 + x1x2. (4.3)

f is a quadratic pseudo-Boolean function with minimum �2.

Due to the restriction to the domain B, we can immediately establish a connection to set
functions. Let n denote a positive integer and let V := {1, . . . , n}. Then, it is easy to see that
there is a one-to-one correspondence between the elements of the power set of V , denoted by
2V , and the binary vectors x 2 Bn. A pseudo-Boolean function can thus be considered as a
set function mapping a real value to every subset of V . Furthermore, let us denote for a subset
S ✓ V by x 2 Bn its characteristic vector, defined as

xi :=

(
1 if i 2 S,
0 otherwise.

(4.4)

2The word “pseudo” refers to the fact that pseudo-Boolean functions map to the real numbers.
3We treat minimization and maximization equally since min f(x) = �max�f(x).
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Obviously, each entry xi represents a Boolean variable. It is thus convenient to define its com-
plement as xi := 1� xi. Moreover, we call the set L = {x1, x1, . . . , xn, xn} the set of literals.

The above definitions allow the direct algebraic formulation of many set functions instead
of listing an exponential number of values:

Example 3. Let V := {1, 2, . . . , n} be the ground set and let f : 2V ! R be a set function. We
define, for every subset S ✓ V , the set function f(S) as the cardinality of S, i.e. f(S) = |S| =P

1in xi.

As it turns out, pseudo-Boolean functions are quite powerful and many problems in combi-
natorial optimization and operations research can directly be stated in a pure algebraic manner.
Among these are well known problems such as the maximum independent set, vertex cover, and
maximum satisfiability problem. It is known that maximization as well as minimization of PBFs
is NP-hard in general [11]. Let us illustrate the expressiveness of PBFs with an example:

Example 4. Consider the following search problem MAXIMUM INDEPENDENT SET:

Instance: An undirected graph G = (V, E).
Task: Find the largest set S ✓ V such that no two vertices in S are adjacent.

It is known that the problem is NP-hard [46]. Since the above problem is a set problem, we can
easily give a purely algebraic formulation [11]:

max
x2BV

X

i2V
xi �

X

(i,j)2E

xixj . (4.5)

It is useful to define the following:

Definition 11 (Boros and Hammer [11]). The multi-linear polynomial representation of a
pseudo-Boolean function is

f(x) =
X

S✓V

cS

Y

i2S
xi, (4.6)

where cS 2 R.

We shall define
Q

i2; xi = 1. Furthermore, we denote by deg(f) the degree of a PBF,
which is the cardinality of the largest subset S having cS 6= 0. Consequentially, a pseudo-
Boolean function f is said to be linear (quadratic, cubic, etc.) if deg(f)  1 (2, 3, etc). This
representation is convenient for the study of pseudo-Boolean functions since it is easy to observe
the following:

Proposition 1 (Boros and Hammer [11]). Every pseudo-Boolean function f : Bn ! R has a
unique multilinear polynomial representation of the form (4.6).
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Moreover, Boros and Hammer [11, Sec. 4.4] show that it is possible to reduce any PBF
to a unique quadratic representation and give a polynomial-time algorithm. Many reductions
with various advantages and disadvantages have been proposed since then [42, 57, 76]. We will
discuss this matter in Section 4.7.

It has been known for more than fifty years that there exists a connection between graph cuts
and quadratic pseudo-Boolean functions, which are of the form

f(x1, . . . , xn) = c0 +
nX

i=1

cixi +
X

1i<jn

cijxixj . (4.7)

Ivănescu [61]4 found that the cut function of a flow network can be written as a quadratic pseudo-
Boolean function. He investigated pseudo-Boolean programming to determine the minimum cut
of a network and equivalently the maximum flow. Later, Picard and Ratliff [90, 91] established
the equivalence and showed that for nonpositive coefficients cij , a quadratic pseudo-Boolean
function such as the above can be minimized efficiently by computing a minimum cut [91,
Prpty. 3]. However, they left the problem of minimizing a quadratic pseudo-Boolean function
with positive coefficients of the quadratic terms via graph cuts as an open question.

In the next section, we will answer this question and see how this severe restriction to non-
positive coefficients relates to the so called submodular functions and how this result affects the
tractability of minimizing (Boolean) Markov random field energies.

4.2 Submodular Functions
Submodular functions and optimization thereof are a well-studied issues in the field of (combi-
natorial) optimization with numerous practical applications, for instance in machine learning.5

First, submodular functions are set functions defined on some finite discrete ground set, and
second, such functions fulfill a certain property which make them somehow related to convex
(continuous) functions giving an interesting subject for study [86]. In this section, we will see
how submodular functions relate to pseudo-Boolean functions and, most important, we will
show that the cut function introduced in Section 2.2 is always submodular.

Let V be a finite ground set of cardinality n and let f : 2V ! R be a set function assigning
each subset of V a real number. Then, we define the following:

Definition 12 (Murota [87]). A set function f : 2V ! R is said to be submodular if for all sets
X,Y ✓ V ,

f(X [ Y ) + f(X \ Y )  f(X) + f(Y ). (4.8)

Conversely, a set function f is said to be supermodular if �f is submodular and we speak
of a modular function if f is both submodular and supermodular. Before we continue, let us

4A colleague pointed out that Peter L. Ivănescu and Peter L. Hammer are actually the same person according to
http://www.gap-system.org/~history/Biographies/Hammer.html.

5We refer the reader to http://www.submodularity.org/ for a comprehensive list of topics and appli-
cations of submodular functions in machine learning.
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consider the following illustrative example from image segmentation which should motivate the
study of submodular functions for vision:

Example 5. Let X := {x, y} be the set of pixels of a one-dimensional image and let, for every
subset A ✓ X , the function f(A) be the (Gibbs) energy for the pixels in A being classified
as foreground object and X \ A being classified as background. We shall assume that f is
submodular. Then,

f({x, y}) + f(;)  f({x}) + f({y}) (4.9)

favors smoothness.

With regard to MRF energies we are interested in the following properties. First, it is easy to
see that a function of one variable is always submodular. Second, submodularity is closed under
addition and every linear combination of submodular functions fi with positive coefficients ↵i >

0, i.e. X

i

↵ifi, (4.10)

again is submodular.
Lovász [86] points out several examples for submodular functions, many of them arising

from graph theory. For instance, he states that the cost function of a cut of a graph is always
submodular [86, cf. Example 1.3]. For the sake of completeness, we give a proof.

Claim 1. The cost function c : V ⇥ V ! R+ of every s-t cut in every flow network (G, c) is
submodular.

For convenience let us define a modified cut function ĉ : 2V ! R+ as

ĉ(S) := c(S,V \ S).

Proof. Let S1, S2 ⇢ V be two arbitrary cuts on G. For the submodularity of ĉ, we have to show
that

ĉ(S1 [ S2) + ĉ(S1 \ S2)  ĉ(S1) + ĉ(S2).

First, observe that either of S1 and S2 can be decomposed into two disjoint sets such that S1 =
(S1 \ S2) [ (S1 \ S2) and S2 = (S2 \ S1) [ (S1 \ S2). The same holds for the complement,
i.e. S1 = (S1 \ S2)[ (S2 \ S1) and S2 = (S2 \ S1)[ (S1 \ S2). In further consequence, we can
write the cost of the cuts as

ĉ(S1) = c(S1 \ S2, S1) + c(S1 \ S2, S1)

= c(S1 \ S2, S1 \ S2) + c(S1 \ S2, S2 \ S1) + c(S1 \ S2, S1 \ S2) + c(S1 \ S2, S2 \ S1)

ĉ(S2) = c(S2 \ S1, S2) + c(S1 \ S2, S2)

= c(S2 \ S1, S2 \ S1) + c(S2 \ S1, S1 \ S2) + c(S1 \ S2, S2 \ S1) + c(S1 \ S2, S1 \ S2)

21



and

ĉ(S1 [ S2) = c(S1 \ S2, S1 \ S2) + c(S2 \ S1, S2 \ S1) + c(S1 \ S2, S1 \ S2)

ĉ(S1 \ S2) = c(S1 \ S2, S1 \ S2) + c(S1 \ S2, S2 \ S1) + c(S1 \ S2, S1 \ S2)

It is now easy to see that by substituting the terms in

ĉ(S1 [ S2) + ĉ(S1 \ S2)  ĉ(S1) + ĉ(S2)

we have

0  c(S1 \ S2, S2 \ S1) + c(S2 \ S1, S1 \ S2) =
X

(u,v)2E
u2S1\S2

v2S2\S1

c(u, v) +
X

(u,v)2E
u2S2\S1

v2S1\S2

c(u, v).

Since the capacities of the arcs are always nonnegative and since S1 and S2 were arbitrary cuts
the claim follows.6

In Section 4.1 we stated the direct connection between set functions and pseudo-Boolean
functions via characteristic vectors. It is thus possible to define submodularity on PBFs. A
pseudo-Boolean function f is submodular if and only if

f(x _ y) + f(x ^ y)  f(x) + f(y), x,y 2 Bn
, (4.11)

where x_ y and x^ y denote the vectors of componentwise maxima and minima, respectively,
defined as

(x _ y)i := max{xi, yi} and (x ^ y)i := min{xi, yi}. (4.12)

Example 6. Let  : B2 ! R be an arbitrary term arising from a Boolean MRF energy. Then,
 is submodular if and only if

 (0, 0) + (1, 1)   (0, 1) + (1, 0). (4.13)

Regarding the submodularity of pseudo-Boolean functions, the following necessary and suf-
ficient condition can be stated:7

Proposition 2. A quadratic pseudo-Boolean function of the form

f(x) =
X

1i,jn

cijxixj +
X

1in

cixi + c0 (4.14)

is submodular if and only if cij  0 for all i, j.
6The submodularity of the cut function of an undirected weighted graph can be shown in a similar way.
7Follows as a direct consequence from Nemhauser et al. [88, Prop. 3.5].

22



Let us develop the above proposition by a simple example:

Example 7. The function  : B2 ! R from Example (6) can equivalently be stated as the
following PBF:

f(x1, x2) =  (0, 0)x1x2 + (1, 1)x1x2 + (0, 1)x1x2 + (1, 0)x1x2 (4.15)

and by substituting negated variables xi by 1� xi transformed to

f(x1, x2) =
�
 (0, 0) + (1, 1)� (0, 1)� (1, 0)

�
x1x2 + L, (4.16)

where L are all positive linear terms (see Freedman and Drineas [42, Sec. 2.1] for the details
of the reduction).

The immediate consequence of this equivalence is the following theorem:

Theorem 3 (Freedman and Drineas [42, Thm. 1]). A quadratic pseudo-Boolean function can
be minimized via graph cut techniques if and only if it is submodular.

Clearly, by Theorem 3 and Proposition 2, the pseudo-Boolean function f from Example 7
can be minimized exactly with graph cuts if and only if equation (4.13) holds.

An alternative definition of submodularity is given by Schrijver [106] and is equivalent to
Definition (12):

Theorem 4 (Schrijver [106, Thm. 44.1]). A set function f on a finite ground set V is submodular
if and only if

f(X) + f(X [ {i, j})  f(X [ {i}) + f(X [ {j}) (4.17)

for each X ✓ V and distinct i, j 2 V \X .

Even though by equation (4.11) submodularity is instantly defined for pseudo-Boolean func-
tions of arbitrary order, the theorem above provides a convenient way of checking submodularity
of f via a single vector x 2 Rn: fix all values but two and then check whether submodularity
holds. For the sake of completeness, it shall be mentioned that this idea was independently de-
veloped by Kolmogorov [71], and Kolmogorov and Zabih [76] who referred to it as regularity.
The equivalence between these concepts is shown by Freedman and Drineas [42].

The notion of submodularity generalizes to functions defined on Rn such that a function
f : Rn ! R is said to be submodular if and only if

f(x _ y) + f(x ^ y)  f(x) + f(y), x,y 2 Rn
, (4.18)

holds [87, Eq. 2.17]. As a consequence, submodularity is defined for every linearly ordered set
L [30, Eq. 2]. It is noteworthy that the submodularity of a function depends on the order of the
set.

We refer the reader to the work of Fujishige [45], Murota [87], and Schrijver [106] for further
details on the subject of submodular functions.
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4.3 Graph Cuts for Boolean MRF Energies

In Section 4.1, we have stated the direct correspondence between submodular quadratic pseudo-
Boolean functions and minimum cuts. In this section, we will see how to represent Boolean
Markov random field energies with submodular priors as quadratic pseudo-Boolean functions
and show how to construct a graph such that the minimum cut globally minimizes the energy.

Recall the image graphs from Section 3.2 and consider an undirected graph G = (V, E)
arising from a regular grid in its general form, i.e. each pixel corresponds to a vertex in the
graph (cf. Figure 3.2). We will now construct a new graph Ĝ = (V̂, Ê) which we will use as a
flow network to encode the Boolean energy.

First, let us define the new set of nodes as V̂ := V [ {s, t}, i.e. we add a source and a
sink. The set Ê consists of two types of edges: t-links (terminal links) and n-links (neighborhood
links). The t-links connect each node to both terminals whereas the n-links connect neighboring
pairs as in the original graph. Thus, Ê := E

S
v2V{(s, v), (v, t)}. A subtle difference emerges

from the fact that G was undirected whereas we have defined Ĝ is a directed graph. For the time
being let us assume that for every undirected edge {i, j} 2 E we add both arcs (i, j) and (j, i) to
V̂ . For better understanding the constructed graph is illustrated in Figure 4.1 (image taken from
Boykov and Kolmogorov [18]).
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Figure 2: Example of a directed capacitated graph. Edge costs are reflected by their thickness.

A similar graph-cut construction was first used in vision by Greig et al. [15] for binary image

restoration.

the terminals are usually called the source, s, and the sink, t. In Figure 2(a) we show a simple

example of a two terminal graph (due to Greig et al. [15]) that can be used to minimize the Potts

case of energy (1) on a 3 × 3 image with two labels. There is some variation in the structure of

graphs used in other energy minimization methods in vision. However, most of them are based

on regular 2D or 3D grid graphs as the one in Figure 2(a). This is a simple consequence of the

fact that normally graph nodes represent regular image pixels or voxels.

All edges in the graph are assigned some weight or cost. A cost of a directed edge (p, q) may

differ from the cost of the reverse edge (q, p). In fact, ability to assign different edge weights for

(p, q) and (q, p) is important for many graph-based applications in vision. Normally, there are

two types of edges in the graph: n-links and t-links. N-links connect pairs of neighboring pixels

or voxels. Thus, they represent a neighborhood system in the image. Cost of n-links corresponds

to a penalty for discontinuity between the pixels. These costs are usually derived from the pixel

interaction term Vp,q in energy (1). T-links connect pixels with terminals (labels). The cost of a

t-link connecting a pixel and a terminal corresponds to a penalty for assigning the corresponding

label to the pixel. This cost is normally derived from the data term Dp in the energy (1).

2.1 Min-Cut and Max-Flow Problems

An s/t cut C on a graph with two terminals is a partitioning of the nodes in the graph into two

disjoint subsets S and T such that the source s is in S and the sink t is in T . For simplicity,

throughout this paper we refer to s/t cuts as just cuts. Figure 2(b) shows one example of a cut.

Figure 4.1: The constructed flow network.

Still, our graph lacks the arc capacities to graduate to a full flow network. Before dealing
with them let us analyze the constructed network. Figure 4.3 shows the final network for a one-
dimensional grid with two pixels {xi, xj}. The dashed lines indicate all possible cuts in the
depicted network.

The crucial insight is now that the flow network is constructed in a way such that each s-t
cut corresponds to a configuration x 2 Bn, since for any minimum s-t cut (S, T ) we can define:

xi :=

(
0 if i 2 S,

1 if i 2 T ,
(4.19)
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xi
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Figure 4.2: Constructed network.

for all i 2 V . Thus, all variables corresponding to vertices being in the same partition as the
source get assigned 0 and all the others get assigned 1. Let us show that this assignment is
well defined. Therefore, let J be the set of feasible cuts on Ĝ which satisfy the following two
properties:

1. for each node i 2 V̂ \ {s, t}, exactly one of (s, i) and (i, t) is cut, and

2. each n-link (i, j) is cut if and only if i 2 S and j 2 T .

Yet, we have to show that these properties hold for a minimum s-t cut.

Claim 2. A minimum cut Ĉ on Ĝ is feasible, i.e. Ĉ 2 J .

Proof. Taken from [13]. Since Ĉ separates the two terminals, exactly one of (s, i) and (i, t) is in
Ĉ. On the other hand, if both edges are in the cut, Ĉ would not be a minimal. Thus, property 1)
holds. Property 2) follows since if i 2 S and j 2 T but (i, j) 62 Ĉ, there would be an s-t path. If
i and j are in the same partition of the cut, then (i, j) 62 Ĉ because of the minimality of Ĉ.

Now that we have established the relation between s-t cuts and configurations, we may write
the cost c(S, T ) of a cut as

c(S, T ) =
X

i2V
(c(s, i)xi + c(i, t)xi) +

X

(i,j)2Ê

(c(i, j)xixj + c(j, i)xixj) . (4.20)

From that it follows immediately that by finding a minimum cut on Ĝ one minimizes the above
quadratic pseudo-Boolean function.

In the remainder we will use a notation introduced by Kolmogorov and Rother [72], which
captures the values of the above function as follows: ✓const is a constant term not reflected by the
cut. For each i 2 V , we define ✓i,xi as ✓i;xi

:= c(s, i)xi + c(i, t)xi, and for each (i, j) 2 Ê we
define ✓ij:xixj as ✓ij:xixj

:= c(i, j)xixj + c(j, i)xixj . Thus, all information can be concatenated
to a tensor ✓ which also contains the constant ✓const.
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Based on the construction of the above graph and the restrictions that all edge capacities are
nonnegative, we are safe to state that

✓i;0 � 0 ✓i;1 � 0 (4.21)
✓ij;00 = 0 ✓ij;01 � 0 ✓ij;10 � 0 ✓ij;11 = 0 (4.22)

holds for all nodes i 2 V and all arcs (i, j) 2 Ê . The first and the last statement in (4.22) impose
a sever restriction on the pseudo-Boolean functions we can minimize with the above construc-
tion: the class of submodular quadratic pseudo-Boolean functions. The question now is how to
generalize this observation to 1) arbitrary submodular quadratic PBFs having ✓ij;00, ✓ij;11 > 0,
and 2) arbitrary (submodular) energies. For the time being we will consider the quadratic case
only, since in Section 4.1 we mentioned that every PBF of degree higher than two can be reduced
to a unique quadratic PBF.

Kolmogorov and Rother [72] introduced the concept of reparameterization of a Boolean
MRF energy to computer vision, which has been familiar to the machine learning community
for some time. Given some pseudo-Boolean energy, the idea is to apply a (finite) number of
steps which rewrite the terms in the energy function such that the constant term increases while
the binary terms at some point comply with (4.22). The reparameterization process is as follows.

Let us start off with an unary term ✓i:a. Given some node i 2 V and some � 2 R+, we
transform ✓ such that

✓i;0  ✓i;0 � � ✓i;1  ✓i;1 � � ✓const  ✓const + �, (4.23)

where denotes the assignment operator as used with pseudocode. The crucial observation is
that the transformation preserves the energy E(x), since xi+xi = 1. Informally speaking, each
reparameteriztion step “shaves off” an additive constant.

Considering the identities xj = (xi + xi)xj and xj = (xi + xi)xj for some arc (i, j) 2 Ê
motivates the reparameterization operations

✓ij;00  ✓ij;00 � � ✓ij;10  ✓ij;10 � � ✓j;0  ✓j;0 + � (4.24)

and

✓ij;01  ✓ij;01 � � ✓ij;11  ✓ij;11 � � ✓j;1  ✓j;1 + � (4.25)

The same holds true for the identities xi = xi(xj + xj) and xi = xi(xj + xj), which we don’t
state for brevity reasons.

The crucial observation is that for submodular vectors ✓ the transformation preserves sub-
modularity. Clearly, modifying unary energies ✓i;a does not affect submodularity. Let us con-
sider a pairwise energy ✓ij;ab for which submodularity is defined as (cf. Section 4.2)

✓ij;00 + ✓ij;11  ✓ij;01 + ✓ij;10. (4.26)

It is easy to see that none of the described operations violates submodularity. Having gained this
insight, we are ready to generalize the functions minimized by the above cut function.
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Definition 13 (Kolmogorov and Rother [72]). If two parameter vectors ✓ and ✓0 define the same
Boolean MRF energy, i.e. E(x, ✓) = E(x, ✓0) for all configurations x 2 Bn, then ✓0 is called a
reparameterization of ✓ and is denoted by ✓0 ⇠ ✓.

The reparameterization motivates the following definition:8

Definition 14 (Blake et al. [10]). A parameter vector ✓ is said to be in normal form if for each
node i 2 V

min{✓i;0, ✓i;1} = 0 (4.27)

holds and for each arc (i, j) 2 Ê one of (4.28) and (4.29) is satisfied:

✓ij;00 = 0 ✓ij;01 � 0 ✓ij;10 � 0 ✓ij;11 = 0 (4.28)
✓ij;00 � 0 ✓ij;01 = 0 ✓ij;10 = 0 ✓ij;11 � 0. (4.29)

Based on the above observations, Blake et al. [10, Sec. 2.2.1] give a simple algorithm for
computing the normal form of a vector ✓:

1. For each arc (i, j) 2 Ê :

a) Compute �  mina,b2B ✓ij:ab and update

i. ✓ij;ab  ✓ij;ab � �, 8a, b 2 {0, 1},
ii. ✓const  ✓const + �.

b) For each b 2 {0, 1} compute �  min{✓ij;0b, ✓ij;1b} and update

i. ✓ij;0b  ✓ij;0b � �; ✓ij;1b  ✓ij;1b � �; ✓j;b  ✓j;b + �.

c) For each a 2 {0, 1} compute �  min{✓ij;a0, ✓ij;a1} and update

i. ✓ij;a0  ✓ij;a0 � �; ✓ij;a1  ✓ij;a1 � �; ✓i;a  ✓i;a + �.

2. For each node i 2 V compute �  min{✓i;0, ✓i;1} and update

a) ✓i;0  ✓i;0 � �; ✓i;1  ✓i;1 � �; ✓const  ✓const + �.

The runtime of the algorithm is O(|V| + |E|), since each iteration computes a constant number
of steps for both loops.

It shall be noted that the normal form is not unique in general and moreover, Blake et al. [10,
Sec. 2.5.1] argue that the reparameterization relates to the problem of determining the largest
lower bound, i.e. ✓const  minxE(x, ✓), on the reparameterized energy. This problem again
can be solved by a maximum flow computation.

At this point, we are ready to tie everything together. The following theorem follows from
the established facts:

Theorem 5 (Blake et al. [10]). For any submodular quadratic pseudo-Boolean function, the
minima x̂ = argminxE(x, ✓) can be obtained in polynomial time by the following steps:

8The original idea was developed in Kolmogorov and Rother [72]. Nevertheless, the definition used by Blake
et al. [10] is easier to grasp.
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1. Reparameterize ✓ to a normal form with the presented algorithm.

2. Construct a flow network Ĝ = (V̂, Ê) as described with the following nonnegative capac-
ities:

c(s, i) := ✓i;1 c(i, t) := ✓i;0 c(i, j) := ✓ij;01 c(j, i) := ✓ji;10. (4.30)

3. Compute a minimum s-t cut in Ĝ and determine x.

Computing a minimum s-t cut can be done by any of the (polynomial-time) maximum flow
algorithms mentioned in Section 2.2. For the the second part, i.e. determining xi for each i 2 V ,
we use the fact that an s-t cut (S, T ) severs the terminals s and t. Thus, S can be determined
by finding all nodes reachable from s (cf. Kleinberg and Tardos [67]). For simple flow networks
such as ours it is sufficient to check for each i 2 V wether arc (s, i) is saturated by the determined
maximum flow and thus part of the minimum cut.

We have shown how to efficiently use graph cuts for energy minimization of submodular
pseudo-Boolean MRF energies. Unfortunately, for nonsubmodular energies the presented ap-
proach can not be applied. As a matter of fact, nonsubmodular pseudo-Boolean function mini-
mization in general is NP-hard. In Section 4.6 we will justify this claim by a proof. Nevertheless,
we will discuss an approach which allows at least the computation of a partial solution.

4.4 Exact Minimization of Multilabel MRF Energies

In Section 4.3, we have seen the graph construction for the exact minimization of Boolean MRF
energies. Nevertheless, most (interesting) applications such as denoising require a multilabel
setting, i.e. |L| > 2. In this section, we cover the basic ideas of graph constructions which allow
the exact minimization of MRF energies over n variables from the domain L and discuss the
restrictions imposed on these functions.

It shall be mentioned that Hochbaum [54] developed a polynomial-time algorithm for en-
ergies with a convex unary potentials �(xi, zi) and linear priors  (xi, xj), and a strongly
polynomial-time algorithm when the unary potentials are linear, quadratic or piecewise linear
convex with “few” pieces (see Hochbaum [54] for the details), respectively. Moreover, Charpiat
[25] recently suggested a graph construction which adds some nonsubmodular energies to the
set of functions that can be minimized exactly with graph cuts.

Convex Priors

Ishikawa [56] suggested a graph construction which is able to minimize MRF energies with
convex priors.9 A function g(�) defined on a set of consecutive integers, i.e. L := {1, . . . , k}, is
convex if and only if all second differences are nonnegativ, i.e. g(�+1)� 2g(�)+ g(�� 1) � 0
holds. Let us look at some examples which are frequently used in computer vision.

Example 8. Let � := xi�xj . A linear (and increasing) convex function is  (xi, xj) := |�| and
a quadratic convex function is  (xi, xj) := |�|2.
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numbers in ascending (or descending) order and ĝgðxÞ is a convex
function, an MRF with energy given by (2) with gð!ðXuÞ # !ðXvÞÞ
replaced by ĝgðXu #XvÞ satisfies the condition, as ! is an affine
function in that case and, thus, the function gðxÞ defined by gð!ðlÞ #
!ðl0ÞÞ ¼ ĝgðl# l0Þ is convex if and only if ĝgðxÞ is.

Without loss of generality, we can assume the labels to be
consecutive integers L ¼ f1; . . . ; kg so that ! becomes an identity,
since we can always redefine hðv; lÞ by hðv; !#1ðlÞÞ. Thus, the energy
(2) becomes:

EðXÞ ¼
X

ðu;vÞ2E
"uv gðXu #XvÞ þ

X

v2V
hðv;XvÞ: ð3Þ

In this paper, we propose a method that uses a minimum cut
algorithm to solve exactly this class of MRF problems.

3 SOLVING MRF BY MINIMUM CUT

3.1 Minimum Cut

The minimum cut problem is a classical combinatorial problem.
(See, for instance, [5]). Consider a graph G ¼ ðV ;EÞwith a function
c on V & V such that cðu; vÞ ¼ 0 if ðu; vÞ =2 E. We call the function
the capacity function. Choose two special vertices s and t. For the
triple ðG; s; tÞ, a cut is a partition of V into two subsets S and
T ¼ V n S such that s 2 S and t 2 T . For a given cut, the total cost of
the cut is defined as

P
u2S;v2T cðu; vÞ. When an edge has its tail in S

and head in T , the edge is said to be in the cut. A minimum cut is a
cut with the minimum total cost. The max-flow min-cut theorem
says that by finding a maximum flow, a minimum cut can be
found. When the capacity function always takes nonnegative
values, a maximum flow, therefore a minimum cut, can be found
in polynomial time using several known algorithms.

In the following sections, we describe the method to efficiently
obtain global optimum for any MRF problem with this form of
energy.

3.2 The Graph

The main idea of the method is to define a graph such that there is a
one-to-one correspondence between configurations of the MRF and
cuts of the graph and the total cost of the cut is exactly the same as the
total energy of the configuration. With such a graph, we can find a
minimum energy configuration of the MRF by finding a minimum
cut of the graph.

As we mentioned above, without loss of generality we can
assume the labels to be the consecutive integers: L ¼ f1; . . . ; kg.
Also, we can assume that the function hðv; lÞ takes nonnegative
values since, otherwise, we can always redefine it by taking its
minimum value over all possible pairs of v 2 V and l 2 L and
subtract it from the function without changing the optimization
problem. Define a graph G ¼ ðV; EÞ as follows:

V ¼ V & L [ fs; tg
¼ fuw;i j w 2 V ; i 2 Lg [ fs; tg; E ¼ ED [ EC [ EP:

ð4Þ

Below, each of the three subsets of edges ED; EC; EP is defined and
their capacities are specified. The reader is referred to Fig. 1 for
illustration.

3.3 Data Edges

Data edges implement the data term hðv;XvÞ in the energy. They
are shown in Fig. 1 as black arrows going up. The set of data edges
is defined by:

ED ¼
[

v2V
Ev
D;

Ev
D ¼ fðs; uv;1Þg [ fðuv;i; uv;iþ1Þji ¼ 1; . . . ; k# 1g [ fðuv;k; tÞg:

ð5Þ

For each vertex v of the original graph G, Ev
D is the series of edges

s ! uv;1 ! uv;2 ! ' ' ' ! uv;k ! t, which we call the column over v.

The capacities of these edges are defined by

cðs; uv;1Þ ¼ þ1; cðuv;i; uv;iþ1Þ ¼ hðv; iÞ;
i ¼ 1; . . . ; k# 1; cðuv;k; tÞ ¼ hðv; kÞ:

These capacities are defined so that the sum of the capacities of
data edges in the cut equals the data term hðv;XvÞ in the energy,
according to the one-to-one correspondence between configura-
tions of the MRF and cuts of the graph, which we define next.

3.4 Constraint Edges

Since any cut of the triple ðG; s; tÞ separates s and t, at least one data
edge in the column Ev

D over each v 2 G is in the cut. Constraint
edges guarantee that each column is cut exactly once. They are the
edges opposite to data edges:

EC ¼
[

v2V
Ev
C; Ev

C ¼ fðuv;iþ1; uv;iÞji ¼ 1; . . . ; k# 1g: ð6Þ

The capacity of each constraint edge is set to infinity: cðuv;iþ1; uv;iÞ
¼ þ1; i ¼ 1; . . . ; k# 1. This precludes more than one data edge
being in the cut in each column Ev

D of data edges over vertex v. To see
this, considerhowtheassignments ofvertices toS orT changesaswe
proceed from s to t on a column, remembering a cut is simply an
assignmentof eachvertex tooneofS orT . The first vertex sbelongs to
S and the last vertex t belongs to T . Thus, there must be at least one
boundary in the progression where the membership changes.
Moreover, the direction of the change must alternate (if you go from
S to T , next time you have to come back from T to S). Suppose that
there ismore than one boundary. Then, the change across at least one
of themmust be from T to S. There is an edge going each way at this
boundary. The edge from S to T is a constraint edge, and by the
definition of a cut, the constraint edge is in the cut. Therefore, if
constraint edges have infinite capacities, there cannot be more than
one boundary on the column. In Fig. 1, constraint edges are depicted
as dashed arrows, and none is in the cut.

3.5 Interpretation of Cuts

As discussed in the previous section, the constraint edges
guarantee that in each column there is exactly one edge in the
cut. Because of this, we can interpret a cut as a configuration of the
MRF. Remember that the space X ¼ LV is a set of configurations
X : V 3 v 7! Xv 2 L, and we want to find the configuration X that
minimizes the energy (3).
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Fig. 1. Data edges are depicted as black arrows. Four of them are in the cut here,
representing the assignments X1 ¼ 1, X2 ¼ 2, X3 ¼ 2, and X4 ¼ 3. Penalty edges
are represented by horizontal arrows. By crossing consecutive penalty capacities,
the cost is added linearly, realizing the prior gðxÞ ¼ jxj. With more edges, any
convex gðxÞ can be used. Constraint edges are depicted as dotted arrows. They
ensure that the assignment Xv is uniquely determined for each v. These edges
cannot be in the cut and, thus, they prevent the cut from “going back.”

Figure 4.3: The construction for convex priors.

Having discussed the prerequisites, let us look at the graph construction. Given an image
graph G = (V, E) and a labelset L := {1, . . . , k}, the suggested construction introduces k � 1
nodes ui,l, one for each i 2 V and every label 1  l < k, representing the elements of L. The
set of arcs consists of three types: data edges, which for each i form a path from s to t via the
introduced label nodes and account for �i, constraint edges, which are of infinite capacity and
form the reverse path for each i 2 V to prevent a cut from “going backwards”, and finally the
penalty edges, which connect each label node to all the other label nodes of neighboring nodes
(pixels) in the original graph and account for the pairwise potential  ij . The construction for a
simple one-dimensional graph and three labels is depicted in Figure 4.3 (taken from Ishikawa
[56]). We refer the reader to Ishikawa [56] for the full details of the construction and more
illustrative material. Nevertheless, we want to emphasize that any possible s-t cut must sever
each path from s to t formed by the introduced nodes ui,l and thus assigns each node a label.

Finally, it shall be noted that the constructed graph consists of O(|V| · |L|) nodes and the
number of edges depends on the chosen neighborhood. Moreover, in case the set of labels is
real-valued and the elements can be indexed by integers (as long as an order is useful for the
respective application) the construction can be applied.

Submodular Priors

To the best of our knowledge, Schlesinger and Flach [104] were the first to give a graph construc-
tion that minimizes general submodular energies. Recently, Darbon [30] developed a formula-
tion trough level sets which allows the exact minimization of MRF energies with submodular
priors. Informally, a level set � 2 L consists of all variables having assigned the same label.
The basic idea is to introduce for each variable and each label a new binary variable which states
whether the value of the variable is less (or equal) or greater than that label.10

9The construction was already published earlier in Ishikawa and Geiger [60].
10Note that by the submodularity L is totally ordered.
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Given an image graph G = (V, E), the number of nodes in the constructed graphs is
⇥(|V| · |L|) (one for each node and label) and the number of edges is O(|E| · |L|2). It is notewor-
thy that both the constructions of Darbon [30] and Ishikawa [56] (see previous section) construct
a graph which depends on the size of L and thus the runtime is pseudo-polynomial in the size of
the input.

Darbon [30] lists several examples for submodular functions which can be globally min-
imized with this construction. A widely used submodular prior for instance is  (xi, xj) :=
g(xi � xj), where g is an unary convex function. We will use this fact later in our analysis.

4.5 Move-Making Algorithms
In Section 4.3, we presented solutions to minimize Boolean MRF energies and in particular we
discussed the exact minimization of submodular Boolean MRF energies. However, a great vari-
ety of problems in vision demand more than two labels. For instance, consider image denoising
of grayscale images where the values taken by the random variables in the MRF originate from a
set L. In general L may be continuous (in Section 4.6 we discuss this matter). Nevertheless, we
will focus on problems for which L is discrete and the elements can be indexed by k consecutive
integers. As before, we state the general form of a first-order MRF energy as

E(x) =
X

i2V
�i(xi) +

X

(i,j)2E

 ij(xi, xj). (4.31)

The major difference to the Boolean case is that in the multilabel scenario x is chosen from Ln.
Even for a small k, it is highly impracticable to minimize MRF energies for images of realistic
size by enumeration of all possible labelings.

A possible choice for the priors in (4.31) is the so called Generalized Potts model, which
was introduced by Boykov et al. [19]. As the name suggests it is a generalization of the original
Potts model [92] and is defined as

 ij(↵,�) := Kij · T (↵ 6= �), (4.32)

where T (·) is 1 if the argument validates to true and 0 otherwise. Kij denotes the cost at the
boundaries and thus the model favors piecewise constant solutions. In case all Kij are equal, we
obtain the original Potts model. By reduction from the minimum cost multiway cut problem it
can be shown that minimizing the Potts energy E(x) with priors (4.32) is NP-hard [22, Appx.]11

making it necessary tackle the problem with approximations.
A possible way to deal with this result are so called move-making algorithms. These algo-

rithms are characterized by the fact that instead of changing the value of a single variable xi at
a time, which is often referred to as a standard move and used both in Simulated Annealing [47]
and Iterated Conditional Models [7] resulting in an exponential worst case runtime, they allow
the change of multiple variables at each iteration.

To this end, in each iteration a potential new solution, also referred to as a move, is suggested.
It is then possible to state this decision procedure as a Boolean energy function which decides

11The NP-hardness result holds even for planar MRF image graphs. See Veksler [111, Appx.] for a proof sketch.
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for each variable whether it keeps its old value or switches to the suggested. In case the resulting
Boolean energy is submodular, the optimal move, i.e. the move which results in the maximum
decrease in energy, can be found efficiently with a graph cut as seen in Section 4.3. In case it
is nonsubmodular, we will still be able to apply a method called BHS Algorithm as we will see
later in Section 4.6. Move-making algorithms iterate and propose new solutions until no move
can further improve the energy of the current solution. Unfortunately, this “steepest descent”
technique may terminate in a local optimum. At least for one move-making algorithm, the
expansion algorithm, we will be able to state an upper bound on the quality of the local (energy)
minimum.

Two major algorithms have been proposed: the Expansion Algorithm and the Swap Algo-
rithm. Both were originally developed by Veksler [111] and Boykov et al. [19, 20, 21, 22] and
impose different restrictions on the MRF energies to be applicable. In particular, the restric-
tion is on the priors  ij , since �i does not affect the complexity. For the applicability of the
expansion algorithm we require all priors  ij to satisfy

 ij(↵,↵) + ij(�, �)   ij(�,↵) + ij(↵, �), 8↵,�, � 2 L, (4.33)

whereas the swap algorithm is less restrictive and demands

 ij(↵,↵) + ij(�,�)   ij(↵,�) + ij(�,↵), 8↵,� 2 L (4.34)

to hold for all priors.
The above inequalities arise from the requirement that the Boolean energy of determining

the optimal move should be submodular. In the following sections we will explain in detail how
they arise.

Special attention deserve the so called discontinuity-preserving priors. Discontinuities, for
instance object boundaries, in an image should be preserved and not smoothed radically. In
other terms, the penalty accounted for boundaries should be bound, e.g. by some constant K.
Such priors are of great importance for many problems such as image segmentation and de-
noising. Unfortunately, even the simplest discontinuity-preserving prior renders the problem
NP-hard [22].

In the following we present the two major move-making algorithms, the expansion and the
swap algorithm. We discuss how to determine the optimal move from an exponential number
of moves and approximation guarantees. Therefore, let us define the underlying moves of the
algorithms.

Given a labeling x, we say that a move from x to x0 is an expansion if for all i 2 V , xi 6= x
0
i

implies x
0
i = ↵ for some label ↵ 2 L. In other words, variables may change their label to ↵.

Thus, such a move is also referred to as an ↵-expansion.
Given a labeling x, a move from x to x0 is said to be a swap if for all i 2 V , xi 6= x

0
i implies

xi, x
0
i 2 {↵,�} for some pair of labels ↵,� 2 L. In other words, a variable may swap its value

from ↵ to � or vice versa. This change is often referred to as an ↵-�-swap.
Both algorithms are similar in their structure. Algorithm 4.1 depicts the expansion algorithm

and Algorithm 4.2 the swap algorithm. Starting from an (arbitrary) initial labeling, in each cycle
(lines 3-9) the optimal move is determined (line 4). The move is immediately accepted in case
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the energy decreases. The algorithms iterate until convergence w.r.t. ↵-expansions and ↵-�-
swaps, respectively. It is readily seen that the expansion algorithms performs |L| cycles whereas
the swap algorithm cycles |L|2 times in each iteration.

Input: initial labeling x.
Result: local minimum x.

1 repeat
2 changed false;
3 for each label ↵ 2 L do
4 x̃ argminE(x̃) among x̃ within one ↵-expansion of x;
5 if E(x̃) < E(x) then
6 x x̃;
7 changed true;
8 end
9 end

10 until changed = false;
Algorithm 4.1: Pseudocode for the expansion algorithm.

Input: initial labeling x.
Result: local minimum x.

1 repeat
2 changed false;
3 for each pair of labels {↵,�} ⇢ L do
4 x̃ argminE(x̃) among x̃ within one ↵-�-swap of x;
5 if E(x̃) < E(x) then
6 x x̃;
7 changed true;
8 end
9 end

10 until changed = false;
Algorithm 4.2: Pseudocode for the swap algorithm.

The crucial idea is to state the problem of finding the optimal move in line 4 for a given
configuration x as a Boolean energy minimization problem. Each variable xi can either keep its
old label or switch. Thus, in case the resulting Boolean energy is submodular it can be minimized
exactly with a graph cut (cf. Sections 4.2 and 4.3). Nevertheless, one should be aware of the fact
that the number of possible moves grows exponentially with |V|.

In order to state the problem of finding the optimal move, let us formally develop the above
described. Therefore, let y := (yi)i2V 2 Bn denote a Boolean vector and let xc be the transfor-
mation function. Given a current configuration x0 and a move y, the function xc computes the
new labeling induced by y as

xc(y) := x0 � (1� y) + x1 � y, (4.35)
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where A�B is the Hadamard (elementwise) product defined as (A�B)i = (A)i · (B)i and x1 is
a proposed labeling. For the expansion algorithm the proposal is defined as x1 := (↵)i for some
label ↵ 2 L whereas for the swap algorithm we define x0 constant as ↵ and x1 constant as �.

From the above definitions it becomes clear that the standard moves, the expansion, and
the swap moves are special cases of the quite general transformation function (4.35). Indeed,
Lempitsky et al. [81] were the first to state this general form, which is referred to as the fusion
move. In Section 4.6, we will see how to deal with such general moves. For the time being we
will focus on expansion and swap moves, since the restriction imposed by inequalities (4.33)
and (4.34) allow the exact minimization of the resulting Boolean energy with graph cuts.

It is now convenient to denote the MRF energy of the new labeling as E(xc(y)). Recall that
the problem of finding the optimal move is then

ŷ = argmin
y

E(xc(y)). (4.36)

Note that the minimization is over the Boolean vector y. The energy can thus be stated naturally
as

E(xc(y)) =
X

i2V
�i(x

c
i (yi)) +

X

(i,j)2E

 ij(x
c
i (yi), x

c
j(yj)). (4.37)

As we have seen in Section 4.2, the Boolean energy (4.37) can be minimized exactly with
graph cuts if and only if all  ij are submodular. We should keep in mind that for the expansion
move the minimum s-t cut decides for each variable xci whether it keeps its label, i.e. x0i if yi = 0,
or switches, i.e. x0i = ↵ if yi = 1. For the expansion move,  ij is submodular if for all ↵ 2 L
the inequality

 ij(↵,↵) + ij(x
0
i , x

0
j )   ij(x

0
i ,↵) + ij(↵, x

0
j ) (4.38)

is satisfied.12 Consequentially, for the swap move the energy is submodular if and only if for all
labels ↵,� 2 L the inequality

 ij(↵,↵) + ij(�,�)   ij(↵,�) + ij(�,↵) (4.39)

is satisfied. From that we have established the conditions (4.33) and (4.34) from the beginning
of the section. Constructing the corresponding flow network for energy (4.37) is straightforward
as discussed in Section 4.3.

For historical reasons, it is noteworthy that in the original work of Veksler [111] and Boykov
et al. [22] it was assumed that for the applicability of the expansion and the swap algorithm a
prior must be a metric and a semi-metric on L, respectively. However, the work of Kolmogorov
and Zabih [76] relaxed these conditions to the above developed.

Optimality and Termination

Let us briefly discuss termination and optimality of the two move-making algorithms. Regarding
termination, Veksler [111] proved that both terminate after a number of at most O(n) iterations,

12Recall that the binary Boolean function  ij is submodular if and only if  ij(1, 1) + ij(0, 0)   ij(0, 1) +
 ij(1, 0) is fulfilled.
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where n is the number of variables. However, Veksler states that in an experimental setup both
algorithms converged after 2-8 iterations.

Regarding optimality, Boykov et al. [22], Veksler [111] give an upper bound on the MRF
energy for the expansion algorithm if  ij is a metric. To this end, suppose that  ij is a metric
for all (i, j) 2 E and let

c := max
(i,j)2E

✓
max↵ 6=�2L ij(↵,�)

max↵ 6=�2L ij(↵,�)

◆
(4.40)

denote the maximum ratio of the largest nonzero value to the smallest nonzero value of all
priors.13 Then, the following bound on the MRF energy can be proved:

Theorem 6 (Boykov et al. [22, Thm. 6.1]). Let x̂ be a local minimum w.r.t. expansion moves
and let x⇤ denote a global minimum. Then, E(x̂)  2cE(x⇤).

For the ordinary Potts model it is easy to verify that c = 1 and therefore the expansion
algorithm yields an approximation within a factor of two.

4.6 Minimizing Nonsubmodular Functions

In Section 4.5 we have introduced two major move-making algorithms, the expansion and the
swap algorithm, and stated the conditions under which they are applicable. In this section we
will concentrate on multilabel problems with nonsubmodular MRF energies as they often occur
in practice. As already discussed, most interesting, e.g. discontinuity-preserving, multilabel
MRF energies are NP-hard [22] and thus approximations are inevitable.

Recall that the previously seen move-making algorithms are based on the efficient compu-
tation of the transformation function via a minimum s-t cut. In this section, we present the so
called fusion move introduced by Lempitsky et al. [81, 82, 83], which is the natural general-
ization of both the expansion and the swap move. The key idea is to allow any two arbitrary
labelings x0 and x1 to be “fused” and to efficiently compute the solution by a graph cut. How-
ever, the standard graph cut technique from Section 4.3 can not be applied if the fusion energy is
nonsubmodular. Rother et al. [96] for instance proposed the truncation of nonsubmodular terms
such that each term satisfies submodularity.

In this section, we present the fusion move and the above mentioned BHS algorithm, which
will allow us to deal with nonsubmodular fusion energies. Before we continue, let show that
even nonsubmodular Boolean MRF energies are NP-complete in general.

NP-completeness of Nonsubmodular Energies

In the following we show that even for a binary set of labels, i.e. L := B, and nonsubmodular
priors, the problem is NP-complete. Therefore, let us consider the following decision problem
PAIRWISE ENERGY-MIN:

13Note that the c is well-defined, since  ij is a metric and thus for  ij(↵,�) 6= 0.
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Instance: A nonsubmodular pseudo-Boolean function E(x) : Bn ! R with terms
depending on up to two variables, and a constant K.

Question: Does there exist a configuration x 2 Bn such that E(x)  K?

For the proof we will use a well-known concept from graph theory:

Definition 15. Given a graph G = (V, E), a subset S ✓ V is a vertex cover if for every edge
(u, v) 2 E at least one of u and v is contained in S.

Consider the corresponding decision problem VERTEX COVER, which is defined as follows:

Instance: An undirected graph G = (V, E) and a constant K.
Question: Does G have a vertex cover S of size at most K?

It is well known that VERTEX COVER is NP-complete [46]. Now, let us show the following
claim.

Claim 3. PAIRWISE ENERGY-MIN is NP-complete.

Proof. Membership in NP follows immediately from a guess-and-check procedure, since a cer-
tificate, i.e. a configuration x 2 Bn, can be checked in polynomial time as follows: given
x, evaluating each term in E(x) and computing the sum requires time O(|E|), where |E|
is the number of terms.14 For the hardness, we give a polynomial-time many-one reduction
VERTEX COVER p PAIRWISE ENERGY-MIN and show the correctness.

Let I := (G,K) be an instance of VERTEX COVER. We define an instance J := (E,K)
of PAIRWISE ENERGY-MIN as follows: for each i 2 V create a variable xi and define a corre-
sponding function �i as

�i(xi) := xi,

and for every edge (i, j) 2 E we define

 ij(xi, xj) :=

(
K + 1 if xi = xj = 0,

0 otherwise.

Now, we define the energy function E as

E(x) :=
X

i2V
�i(xi) +

X

(i,j)2E

 ij(xi, xj).

Clearly, the reduction can be done in polynomial time in the size of the graph G, since the
number of terms in E is bound by O(|V |+ |E|) and the constructed PBF is nonsubmodular (cf.
Section 4.2), since

 ij(0, 0) + ij(1, 1)� ij(0, 1)� ij(1, 0) > 0. (4.41)
14We make the additional assumption that each term can be evaluated in time polynomial in the size of the input,

e.g. by looking up the value in a table which is part of the input or by computing some (algebraic) function in P.
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Finally, let us show that

I 2 VERTEX COVER , J 2 PAIRWISE ENERGY-MIN.

()): Suppose that I 2 VERTEX COVER. Then, S ✓ V denotes a vertex cover of size at most

K. Now define for every i 2 V

xi :=

(
1 if i 2 S,

0 else.

Clearly, every xi is well-defined and E(x)  K.

((): Suppose that J 2 PAIRWISE ENERGY-MIN. Since E(x)  K, no term  ij(xi, xj) in E

exists such that both variables are assigned zero. Thus, we define for every i 2 V ,

i 2 S , xi = 1,

and observe that S is a subset of V and a vertex cover of size at most K and the claim follows.

It is noteworthy that Kolmogorov and Zabih [76] established a similar reduction from the
INDEPENDENT SET problem.

Fusion Move

In the beginning of this section we have informally already discussed the idea of “fusing” two
labelings. The basic concept is to combine two suboptimal labelings, which we will refer to as
proposals, such that the result in general may contain optimal parts of both proposals and is of
lower or at least is of equal energy.

Given two configurations x0
,x1 2 Ln and a Boolean vector y 2 Bn, a vector xc 2 Ln is

said to be a fusion of x0 and x1 if

xc(y) := x0 � (1� y) + x1 � y, (4.42)

where � again denotes the Hadamard product (cf. Section 4.5). Often this combination is denoted
as xc = x0�x1 and is referred to as a fusion move. The great importance of the approach lies in
the ability to combine any two labelings. It is easy to see that the expansion move and the swap
move are special cases of the fusion move.

The resulting Boolean energy has already been stated earlier (cf. Section 4.5, Eq. (4.37)):

E(xc(y)) =
X

i2V
�i(x

c
i (yi)) +

X

(i,j)2E

 ij(x
c
i (yi), x

c
j(yj)). (4.43)

In case the resulting fusion energy is submodular, the global minimum can be computed with a
minimum cut as seen in Section 4.3. In the next section we will see how to deal with nonsub-
modular energies.

In addition, the fusion operation it is not necessarily limited to a discrete (one-dimensional)
space of labels. In fact, L may be any discrete or a continuous (e.g. L ✓ Rd) space of labels.
The latter is for instance is used to determine the optical flow between two images [82].
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Input: initial labeling xi.
Result: local minimum xc.

1 x0  xi;
2 repeat
3 x1  generateProposal(xi

,x0);
4 x̃ argminE(x0 � x1);
5 if x̃ is partial then
6 xc  x̃ / argminc2{x0,x1}E(c);
7 else
8 xc  x̃;
9 end

10 until maxIterations reached;
Algorithm 4.3: Pseudocode for the fusion move algorithm.

The generic form of the fusion algorithm is outlined in Algorithm 4.3. As with the expansion
and the swap algorithm, the fusion algorithm is very simple and works as follows: starting from
an initial configuration x0, in each iteration a proposed labeling x1 is generated (line 3). We
will later explain how we generate such proposals. Then, the optimal fusion move, denoted by
x0 � x1, w.r.t. the Boolean fusion energy is computed with the BHS algorithm (line 4), which
computes a partial labeling (in the next section we will see the details). In case that the fusion
energy is nonsubmodular, the BHS algorithm returns only a partial labeling x̃, which is then
merged (the operation is denoted by /) with the proposal which has lower energy. Note that the
procedure always accepts solutions.

Clearly, the efficiency of this steepest descent algorithm depends on the capability of gener-
ating valuable proposals. Lempitsky et al. [83] state that in an experimental setting they observed
that the number of unlabeled variables correlates with the number of nonsubmodular terms in the
fusion energy. Informally, a submodular fusion term favors neighboring pixels from the same
proposal (cf. Example 5). Thus, we conclude that proposals should be smooth w.r.t. the priors
and result in submodular fusion energies.

BHS Algorithm

In the previous section we have stated that the global optimum of a fusion move can be com-
puted if the Boolean energy (4.43) is submodular. However, if not, a concept from Quadratic
Pseudo-Boolean Optimization (QPBO), the so called BHS Algorithm, allows the computation
of a partially optimal solution x 2 Bn. The method was developed by Hammer et al. [52] and,
informally, such a partial solution can be computed by obtaining the strongest possible lower
bound, the master roof, of a quadratic pseudo-Boolean function. Here, partiality of a solution
means that each xi takes values from the set {0, 1, ?}, where “?” can be considered as “unknown”
or “unlabeled”. Boros et al. [12]15 were the first to state a network flow-based implementation
of the method and, in reference to the authors, the method is referred to as the BHS algorithm.

15Unfortunately, it was impossible to us and others in that field to obtain the original publication. We refer the
reader to Boros and Hammer [11], which apparently contains most of the work but omits the proofs.
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Rother et al. [99, 99] and Kolmogorov and Rother [72], who introduced this method to the
field of computer vision, state the properties of the algorithm as follows:

1. Persistency: given a complete labeling y and a fusion z of x and y defined as: zi := xi if
xi 2 {0, 1} and zi := yi else. Then, E(z)  E(y).

2. Partial optimality: for at least one global minimum x̂ of the fusion energy (4.43), xi = x̂i

if xi is labeled, i.e. xi 2 {0, 1}.

3. In case all terms of energy (4.43) are submodular, all variables will be labeled.

4. The algorithm is invariant to “flippings”: for a subset of variables the meaning of 0 and 1
can be swapped (transforming nonsubmodular terms into submodular and vice versa).

The strength of the method clearly depends on the number of variables that are labeled. How-
ever, since we have seen that the problem of minimizing nonsubmodular energies is NP-hard in
general, not all variables will be labeled if the energy contains nonsubmodular terms [72]. More-
over, Rother et al. [98, 99] developed several heuristics to deal with the unlabeled variables.

4.7 Higher-order Energy Functions

So far, we have only discussed first-order MRF energies with terms of arity at most two. How-
ever, such energies often do not capture the rich characteristics of natural scenes and for some
applications it is preferable to consider higher-order clique potentials where the cliques are of
size three or more. Often such energies are referred to as higher-order energy functions.

Kolmogorov and Zabih [76] stated a reduction from a submodular second-order Boolean
energy to a first-order Boolean energy which preserves submodularity. Later, Freedman and
Drineas [42] restated the reduction as an algebraic formula. To the best of our knowledge, all
reductions introduce new variables to the energy. Over the years, many reductions have been
proposed and we refer the reader to Ishikawa [57] for a detailed analysis.

4.8 Maximum-Flow Algorithms for Computer Vision

Even though the standard algorithms for computing maximum flows, and equivalently minimum
cuts, in the constructed networks operate in strongly polynomial time, algorithms which take
advantage of the underlying structure of the graph have shown to outperform known strongly
polynomial-time algorithms in an experimental setting [16, 18, 48]. Several new algorithms and
adaptions have been proposed (see for instance Arora et al. [3], Delong and Boykov [36], and
Liers and Pardella [85]).

Moreover, in a setting where the structure of the constructed flow network does not change
much (e.g. in interactive image segmentation), the network flow can be computed incrementally
(see for instance Boykov and Jolly [15]). For further details on dynamic graph cut algorithms
we refer to the work of Kohli [68], Kohli and Torr [69, 70].

38



4.9 Image Denoising with Graph Cuts
In Section 2.1, we have seen a mathematical formulation of continuous and discrete images, and
of a major form of degradation (noise) which may appear in the process of image acquisition.
In the course of this work, we focus on random degradation which can be described with the
presented noise models (cf. Section 2.1). The process of removing the degradation is referred to
as image restoration and in particular we speak of image denoising whenever we want to express
that the degradation is caused by noise. The quality of the restored result depends on the chosen
noise and parameter model which should be as close as possible to reality. In this chapter, we
discuss regularization as a variational method for inverse problems such as image denoising.

Let u0 : ⌦ ! R be the intensity function of an original image and let u� : ⌦ ! R be the
intensity function of the observed (degraded) image. Given a noisy image u

�, the problem of
finding u0 from u

� is referred to as image denoising. Reconstructing u0 from u
� is a difficult task

since often little is known about the noise. For instance, it might be the case that only statistical
measures such as the mean or the variance of the noise can be inferred.

A common approach for finding a solution to the above problem is the so called Tikhonov
regularization [110], which is to minimize the functional

T↵,u�(u) := S(u, v�) + ↵R(u), (4.44)

where ↵ > 0 is the regularization parameter, and R is a non-negative functional. The first term
is called the fit-to-data term and measures the fitting of the (restored) solution u to the observed
data u

� whereas the second term is referred to as the regularization term and accounts for the
“smoothness” or variation of the solution u. The regularization parameter ↵ controls the tradeoff
between the two terms. If ↵ is chosen small, the solution tends to fit closely to the observed data
u
� and for large ↵ the solution tends to be smooth.

A common choice for the data fitting term S is the L
1 or the (squared) L2 metric whereas

the regularization term R is chosen to depend on the gradient ru of the solution. For a better
understanding, let us consider a concrete example taken from Aubert and Kornprobst [4, Eq.
3.4]:

Example 9. Tikhonov and Arsenin [110] proposed minimizing the functional

T↵,u�(u) :=

Z

⌦
|u� u

�|2dx+ ↵

Z

⌦
|ru|2dx, (4.45)

where ru denotes the gradient of u (cf. Section 2.1). Depending on ↵, a minimum of the above
functional prefers solutions with a low gradient such that the noise is removed.

For denoising applications, it is common to consider minimizing (convex) first-order func-
tionals of the general form

S(u, u�) + ↵R(u) :=

Z

⌦
�(u, u�)dx+ ↵

Z

⌦
 (x, u,ru)dx, (4.46)

where � is some fit-to-data function and ↵ > 0 [103]. We speak of first-order regularization if
ru is the highest order differentiation of u which  depends on. In the course of this work, we
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consider this type only. In general, a first-order regularization model is said to be isotropic if

 (x, u,ru) = b (x, u, |ru|), (4.47)

i.e. the function  does not depend on the orientation of the gradient. Otherwise, a model is said
to be anisotropic.

Let us discuss some choices for � and the resulting discrete forms of S . In case the fit-to-data
function is defined as the absolute difference, i.e. �(u, u�) := |u � u

�|, we obtain the discrete
L
1 metric Z

⌦
|u� u

�| ⇡
nxX

i=1

nyX

j=1

|uij � u
�
ij | (4.48)

for discrete images u and u�. If � is defined as the squared differences, i.e. �(u, u�) := |u�u�|2,
we get the discrete form

Z

⌦
|u� u

�|2 ⇡
nxX

i=1

nyX

j=1

|uij � u
�
ij |2, (4.49)

which is the squared L
2 metric.

In the following, we will discuss various forms of  and their discrete counterparts used
for first-order regularization. For each functional we investigate the applicability of the graph
cut methods we have discussed. In Chapter 5 we present experimental results for some selected
functionals.

4.10 First-Order Regularization Functionals for Denoising

In this section, we discuss (convex) first-order regularization methods for denoising summarized
by Scherzer et al. [103, Sec. 4] and the corresponding finite-dimensional discrete forms. For
each discrete energy, we investigate the applicability of the graph cut methods. First, let us recall
the conditions for the applicability. For the expansion algorithm we required in Section 4.5 for
all priors  ij

 ij(↵,↵) + ij(�, �)   ij(�,↵) + ij(↵, �), 8↵,�, � 2 L, (4.50)

whereas the condition for the swap algorithm is

 ij(↵,↵) + ij(�,�)   ij(↵,�) + ij(�,↵), 8↵,� 2 L, (4.51)

and submodularity for an n-ary prior  C is defined as

 C(x _ y) + C(x ^ y)   C(x) + C(y), x,y 2 Ln
, (4.52)

where x _ y (x ^ y) denotes the componentwise maximum (minimum) of x and y. These
conditions must hold for all i, j and C, respectively.
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Total Variation

In their work Rudin, Osher, and Fatemi [101] (ROF) introduced total variation (TV)-based
denoising models. The total variation of a continuous image u is stated as

kukTV :=

Z

⌦
|ru|dx (4.53)

and has widely been used as an edge preserving regularizer Chan et al. [24]. The ROF model for
regularization is then written as

Z

⌦
|u� u

�|2dx+ ↵

Z

⌦
|ru|dx. (4.54)

The first term is the squared L
2 metric of the difference between the solution u and the observed

image u
� and requires u to preserve a significant part of the features from the observed image.

The second term is the total variation of u and accounts for the amount of oscillation in the
image such that noise effects diminish. It is noteworthy that the choice of the data term assumes
additive Gaussian noise with zero mean as a noise model.

A common approach is to first state the above functional as a discrete finite-dimensional
energy and then to optimize the energy. According to Chan et al. [24], common discrete forms
of (4.53) are

kukTV =
nx�1X

i=1

ny�1X

j=1

(|ui+1,j � uij |+ |uj,j+1 � uij |) , and (4.55)

kukTV =
nx�1X

i=1

ny�1X

j=1

q
(ui+1,j � uij)2 + (uj,j+1 � uij)2, (4.56)

where again u is a discrete image.
The form (4.55) is a discrete form of the anisotropic TV

R
⌦(|ux| + |uy|)dx and (4.56)

is a discretization of the isotropic TV
R
⌦

q
u2x + u2ydx, where here the functions ux and uy

denote the partial derivatives of u with regards to x and y, respectively. It is noteworthy that the
isotropic TV is rotational invariant whereas the anisotropic TV is not. Informally, the anisotropic
TV prefers edges or boundaries along the directions of the image axis.

Let us investigate the applicability of graph cut algorithms. Given an image graph G =
(V, E) arising from a regular grid, equation (4.55) can be brought into the form

X

(i,j)2E

 (xi, xj), (4.57)

with (xi, xj) := |xi�xj |. Since is convex in � := xi�xj it can be minimized exactly with
the construction suggested by Ishikawa [56] (cf. Section 4.4) and with the construction by Dar-
bon [30] (cf. Section 4.4), and approximated with both the expansion and the swap algorithm.

For further details on discrete forms of the anisotropic total variation and formulations
through level sets we refer the reader to the work of Chambolle and Darbon [23], Darbon
[29, 30], Darbon and Peyronnet [31], Darbon and Sigelle [32, 33, 34, 35].
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However, equation (4.56) can not directly be stated as a sum of pairwise potentials (except
for the case that L := B where we can easily construct an equivalent PBF). The energy needs to
be formulated as a clique potential with three parameters, i.e.

X

(a,b,c)2C0
3

 (xa, xb, xc), (4.58)

where C0
3 denotes the set of cliques of size three such that we have three corresponding pixels

(uij , ui+1,j , ui,j+1) which, basically, form a triangle. In the following we will show that for
L := B the submodularity condition (4.52) is satisfied. Unfortunately, a label space where L
are consecutive integers with |L| > 2 does not fulfill submodularity and thus, to the best of
our knowledge, no reduction to a quadratic submodular function exists. Let us show that these
claims hold.

Proposition 3. For L := B, the clique potential

 (xa, xb, xc) :=
p

(xa � xb)2 + (xa � xc)2 (4.59)

is submodular.

Proof. Let x,y 2 B3. It is easy to see that if for the two vectors x  y or x � y, or x = y
holds, then submodularity is fulfilled, i.e.

 (x _ y) + (x ^ y) =  (x) + (y) (4.60)

holds. Thus, we only have to consider vectors x,y 2 B3 where indices i 6= j exist such
that xi < yi and xj > yj (or the converse) and x 6= y. Informally, these are all pairs of
noncomplementary vectors such that the elementwise minimum and maximum contain elements

of both vectors. For a better understanding let us write the vectors as
✓
xa xb xc

ya yb yc

◆
. The

remaining cases we have to consider are of the form:
✓
v u u

v u u

◆
and the symmetric forms

✓
u v u

u v u

◆
and

✓
u u v

u u v

◆
, (4.61)

where u, v 2 B. Without loss of generality, let us assume that u = 1. For the first case we get
the submodularity conditions

p
(v � u)2 + (v � u)2+

p
(v � u)2 + (v � u)2 (4.62)


p
(v � u)2 + (v � u)2 +

p
(v � u)2 + (v � u)2, (4.63)

and for the second and the third case we get
p
(u� v)2 + (u� u)2+

p
(u� v)2 + (u� u)2 (4.64)


p

(u� v)2 + (u� u)2 +
p
(u� v)2 + (u� u)2, (4.65)
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and
p

(u� u)2 + (u� v)2+
p

(u� u)2 + (u� v)2 (4.66)


p
(u� u)2 + (u� v)2 +

p
(u� u)2 + (u� v)2. (4.67)

Since u� u = u� u = 0 and u� u = 1 the claim follows.

It is thus possible to exactly minimize these energies by first applying any of the reductions
by Freedman and Drineas [42], Ishikawa [57], Kolmogorov and Zabih [76] to the quadratic case
and then using the graph construction from Section 4.3. Next, let us consider the more interesting
multilabel case.

Proposition 4. For a label space of consecutive integers, i.e. L := {0, 1, . . . , k}, the clique
potential

 (xa, xb, xc) :=
p
(xa � xb)2 + (xa � xc)2 (4.68)

is nonsubmodular for k > 1.

Proof. By counterexample: let k > 1, let x := (0, 1, 2)T , and let y := 1 and observe that

 (1, 1, 2) + (0, 1, 1) >  (0, 1, 2) + (1, 1, 1) (4.69)

violates the submodularity condition (4.52).

Finally, let us investigate the applicability of large moves to the multilabel case. Recall
that for the expansion algorithm for any configuration x 2 L3 and for any label ↵ 2 L the
energy  (xc(y)) must be submodular. We use the equivalent submodularity definition given in
Theorem 4.

Proposition 5. For a label space of consecutive integers, i.e. L := {0, 1, . . . , k}, the clique
potential

 (xc(ya, yb, yc)) :=
q�

(xca(ya)� xcb(yb)
�2

+ (xca(ya)� xcc(yc))
2 (4.70)

is nonsubmodular for k > 1.

Proof. By counterexample: let k > 1, let ↵ := 1, and let x := (0, 0, 2)T . Then, by Theorem 4
the submodularity inequality must hold for every subset X ✓ V and distinct i, j 2 V \X , where
the sets are induced by the expansion move. Let us choose as X the empty set, i as the element
triggered by yb and j as the element associated with yc. Thus,

 (xca(0), x
c
b(0), x

c
c(0)) + (x

c
a(0), x

c
b(1), x

c
c(1)) (4.71)

  (xca(0), xcb(0), xcc(1)) + (xca(0), xcb(1), xcc(0)) (4.72)

must hold. Keeping in mind that the expansions induced by xc are

 (xa, xb, xc) + (xa,↵,↵)   (xa, xb,↵) + (xa,↵, xc) (4.73)

and by our choice of ↵ and x we get

 (0, 0, 2) + (0, 1, 1)   (0, 0, 1) + (0, 1, 2), (4.74)

which clearly does not hold. Therefore,  (xc(y)) is nonsubmodular for k > 1.
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Finally, we analyze whether we can still apply the swap algorithm.

Proposition 6. For a label space of consecutive integers, i.e. L := {0, 1, . . . , k}, the clique
potential

 (xc(y)) :=
q�

xca(ya)� xcb(yb)
�2

+ (xca(ya)� xc(yc))
2 (4.75)

is submodular for k > 1.

Proof. Let k > 1, let ↵,� 2 L be arbitrary labels, and let x 2 L3. Then, again by Theorem 4,
for every two components of y we need to check the swap condition. We first consider (yb, yc):

 (xca,↵,↵) + (x
c
a,�,�)   (xca,↵,�) + (xca,�,↵) (4.76)

p
2(xca � ↵)2 +

p
2(xca � �)2  2

p
(xca � ↵)2 + (xca � �)2. (4.77)

Let A := (xca � ↵)2 and let B := (xca � �)2. Then, since A,B � 0,
p
2A+

p
2B 

p
4(A+B) | (·)2 (4.78)

2A+ 2
p
2A
p
2B + 2B  4A+ 4B. (4.79)

It remains to show that
p
2A
p
2B  A+B:

p
2A
p
2B  A+B (4.80)

2
p
A

p
B  A+B | (·)2 (4.81)

4AB  (A+B)2 = A
2 + 2AB +B

2
, (4.82)

which holds true for A,B � 0. Next, let us consider (ya, yb). It is easy to see that

 (↵,↵, xcc) + (�,�, x
c
c)   (↵,�, xcc) + (�,↵, xc) (4.83)

p
(↵� xcc)

2 +
p

(� � xcc)
2 

p
(↵� �)2 + (↵� xcc)

2 +
p
(� � ↵)2 + (� � xcc)

2 (4.84)

holds. For symmetry reasons, (ya, yc) can be shown analogously.

Thus, we have shown that for discrete energies of the form (4.56) the swap algorithm can be
applied and therefore the cubic transformation energy can efficiently be reduced to a submodular
quadratic form by any reduction from Section 4.7.

Isotropic Regularization

A common isotropic first-order-regularization model is [94, 105]

b (x, u, |ru|) := |ru|2. (4.85)

The discretization again is straightforward and we obtain

kuk2 =
nx�1X

i=1

ny�1X

j=1

(ui+1,j � uij)
2 + (ui,j+1 � uij)

2
, (4.86)
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which on an image graph G can be stated as a pairwise potential (4.57) with  (xi, xj) :=
(xi�xj)2. It is not hard to see that for the Boolean case the same properties as for the anisotropic
TV hold. Let us classify the function and see what algorithms we might be able to apply for the
multilabel case.

Proposition 7. For a label space of consecutive integers L := {0, 1, . . . , k} and k > 1 the
potential  (xi, xj) := (xi � xj)2 cannot be approximated with the expansion algorithm.

Proof. By counterexample: let k > 1 and let ↵,�, � 2 L. Then,

 (↵,↵) + (�, �)   (�,↵) + (↵, �) (4.87)

0 + (� � �)2  (� � ↵)2 + (↵� �)2 (4.88)
0  (↵� �)(↵� �) (4.89)

Now we choose � < ↵ < � or � < ↵ < � and observe that the inequality is violated.

Finally, let us check the applicability of the swap algorithm.

Proposition 8. For a label space of consecutive integers L := {0, 1, . . . , k} and k > 0 and the
potential  (xi, xj) := (xi � xj)2 the swap algorithm can be applied.

Proof. Let k > 1 and let ↵,� 2 L be arbitrary. Then,

 (↵,↵) + (�,�)   (↵,�) + (�,↵) (4.90)

0  2(↵� �)2 (4.91)

holds and the claim follows.

However,  can be written as a convex function in � := xi � xj , thus the energy can be
minimized exactly with both the constructions by Ishikawa [56] and Darbon [30].

Moreover, Scherzer et al. [103] list weighted regularization models, which aim at a better
preserving of discontinuities in an image. As mentioned earlier, we want a model not to over-
smooth edges. Such regions are characterized by a large gradient ru. Therefore, some weight
depending on x is introduced which makes the regularization term small in areas where the
gradient is large. The observed data can not directly be used for weight determination since
noise might also cause regions with large gradients. Instead, a mollifier ⇢ is first applied to the
recorded image u

� with the goal of smoothing it. The measure r(⇢ ⇤ u�) can then be used to
determine the weights. To this end, let r 2 R and let �2 > 0. We define

g(r) :=
1

1 + r2/�2
. (4.92)

The weighted isotropic regularization model for denoising is then

b (x, u, |ru|) := g(|r(⇢ ⇤ u�)|)|ru|2. (4.93)
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It is readily seen that the model can directly be stated as the discrete energy

nx�1X

i=1

ny�1X

j=1

gij
�
(ui+1,j � uij)

2 + (ui,j+1 � uij)
2
�
, (4.94)

where g is a matrix resulting from (4.93). Clearly, the energy can be defined on an image graph
G and brought into the form ij := wij(xi�xj)2, with w being defined appropriately. The same
properties we have established for the isotropic first-order regularization model (4.85) apply and
the above energy can be minimized exactly with the constructions of Ishikawa [56] and Darbon
[30]. Moreover, these energies can be approximated with the swap algorithm.

Analogous to the above model, the weighted ROF functional is defined as

b (x, u, |ru|) := �(x)|ru|, (4.95)

for some function � : ⌦! R+. The finite-dimensional discrete form of functionals of the above
form is similar to the discrete form of the isotropic TV with the only difference that the discrete
energy must incorporate the weights and thus depend on x 2 ⌦. It is easy to see that with regard
to graph cut applicability the same results as for the isotropic TV can be obtained.

Huber Model

Another prominent isotropic first-order regularization model is the so called Huber model [55,
78], which is defined as

b (x, u, |ru|) :=
(
|ru|2 if |ru|  1,
2|ru|� 1 else.

(4.96)

Clearly, the model is spatially dependent in the sense that in regions having a small gradient
it penalizes less than in regions with a large gradient. Regarding discretization we rely on already
established forms:

 (xa, xb, xc) :=

(
(xa � xb)2 + (xa � xc)2 if

p
(xa � xb)2 + (xa � xc)2  1,

2
p

(xa � xb)2 + (xa � xc)2 � 1 else.
(4.97)

Let us for a moment assume our usual discrete space of labels L := {0, 1, . . . , k} with k > 0,
then in regions of the image where

|uij � ui+1,j |+ |uij � ui,j+1|  1 (4.98)

is satisfied the function  takes the first and otherwise the second nature. Clearly, if (4.98)
holds, then  2 {0, 1}. Unless a discrete image satisfies (4.98) in all regions (e.g. a constant
image), the established properties from the isotropic TV model inherit. Thus, with the presented
methods the discrete Huber model (4.97) can be approximated with the swap algorithm only.
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Anisotropic Regularization

So far, we have seen mostly isotropic regularization methods for denoising. Scherzer et al. [103]
consider a class of quadratic anisotropic first-order regularization models which can be written
as

 (x,ru) := ruTA(x)ru, (4.99)

where A is a positive definite matrix defined as

A :=

✓
v1 �v2
v2 v1

◆✓
g(|r(⇢ ⇤ u�)|) 0

0 1

◆✓
v1 v2

�v2 v1

◆
, (4.100)

and v := (v1, v2)T is defined as

v :=

( r(⇢⇤u�)
|r(⇢⇤u�)| if |r(⇢ ⇤ u�)| > 0,

e1 else,
(4.101)

where e1 is the canonical vector. It is readily seen that A is of the form

A =

✓
v
2
1g(·) + v

2
2 v1v2g(·)� v1v2

v1v2g(·)� v1v2 v
2
2g(·) + v

2
1

◆
. (4.102)

Figure 4.5 depicts the components of matrix A computed for the noisy image in Figure 4.4.

Figure 4.4: Noisy image.

Let us investigate the properties of the above model.

ruTA(x)ru =
�
ux uy

�✓a11 a12

a21 a22

◆✓
ux

uy

◆
(4.103)

= a11u
2
x + (a12 + a21)uxuy + a22u

2
y, (4.104)

where aij are constant and do not depend on u. Moreover, by (4.102) we have a12 = a21. A
discrete finite-dimensional form of (4.99) is

nx�1X

i=1

ny�1X

j=1

a11u
2
x + 2a12uxuy + a22u

2
y. (4.105)
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(a) (a11)(i,j)2I2 (b) (a12)(i,j)2I2

(c) (a21)(i,j)2I2 (d) (a22)(i,j)2I2

Figure 4.5: Example for matrix A using mollifier ⇢ = 1/9 · J3.

Obviously, the first and the last term are independent pairwise potentials and thus the energy can
be brought into the form

X

(i,j)2E

 ij(xi, xj) +
X

(a,b,c)2C0
3

�abc(xa, xb, xc), (4.106)

where the pairwise potentials are defined as  ij(xi, xj) := wij(xi � xj)2 with an appropriate
weight matrix w, and

�abc(xa, xb, xc) := 2a12(xa � xb)(xa � xc). (4.107)

Earlier we stated that since ij is submodular it can be minimized exactly. However, let us show
the following.

Proposition 9. For a discrete label space of consecutive integers, i.e. L := {0, 1, . . . , k}, the
clique potential �abc is nonsubmodular for k � 1 and a12 = a21 6= 0.

Proof. For k = 1 it is readily seen that

2a12(xa � xb)(xa � xc) (4.108)
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is a pseudo-Boolean function of degree two and has both positive and negative coefficients.
Thus, by Proposition 2, the energy (4.107) is nonsubmodular.

Even though the result immediately generalizes for k > 1 we give a justification. It is
sufficient to show that no product cxixj with c > 0 is submodular. To this end, let x,y 2 L2.
By the submodularity condition (4.52) we have

max{x1, y1} ·max{x2, y2}+min{x1, y1} ·min{x2, y2}  x1x2 + y1y2. (4.109)

Let x := (1, 2)T and let y := (2, 1)T and observe that the above inequality is violated.

From our previous results, we can conclude immediately that the energy (4.106) can not be
approximated with the expansion algorithm since not even the pairwise terms  ij can. Finally,
let us show that the swap algorithm does not apply either.

Proposition 10. For a discrete label space of consecutive integers, i.e. L := {0, 1, . . . , k}, the
clique potential �abc(xc(y)) := 2a12(xca(ya) � x

c
b(yb))(x

c
a(ya) � x

c
c(yc)) does not fulfill the

swap condition for k � 1 and a12 = a21 6= 0.

Proof. By counterexample. Observe that

�abc(x
c
a,↵,↵) + �abc(x

c
a,�,�)  �abc(x

c
a,�,↵) + �abc(x

c
a,↵,�) (4.110)

(xca � ↵)2 + (xca � �)2  2(xca � ↵)(xca � �). (4.111)

Now, we choose x
c
a = ↵ and � 6= x

c
a, and observe that the inequality is violated.

From the previous propositions we get as a consequence that the generalization which the
quadratic anisotropic model introduces leaves us only with the fusion move for nonsubmodular
energies.

Anisotropic Non-Quadratic Regularization

It is noteworthy that there exist a non-quadratic anisotropic first-order regularization model,
which is stated as q

ruTA(x)ru. (4.112)

Brought in a discrete form, we obtain

nxX

i=1

nyX

j=1

q
a11u

2
x + 2a12uxuy + a22u

2
y. (4.113)

In this particular case we are directly able to show that the swap condition is violated for
some ↵,� 2 L and thus conclude that the function (4.113) is in general neither submodular nor
does it fulfill the expansion condition.
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Proposition 11. For a discrete label space of consecutive integers, i.e. L := {0, 1, . . . , k}, the
clique potential

�abc(x
c(y)) :=

q
a11u

2
x + 2a12uxuy + a22u

2
y (4.114)

with

ux := x
c
a(ya)� x

c
b(yb), (4.115)

uy := x
c
a(ya)� x

c
c(yc). (4.116)

does not fulfill the swap condition for k � 1.

Proof. Again, let us consider the condition where we fixed ya, which is

�abc(x
c
a,↵,↵) + �abc(x

c
a,�,�)  �abc(x

c
a,�,↵) + �abc(x

c
a,↵,�), (4.117)

and expands to
p
(a11 + 2a12 + a22)(xca � ↵)2 +

p
(a11 + 2a12 + a22)(xca � �)2 (4.118)

 2
p
a11(xca � ↵)2 + 2a12(xca � ↵)(xca � �) + a22(xca � �)2. (4.119)

It is easy to see that for a choice of xca = ↵, xca 6= �, and coefficients

a11 + 2a12 + a22 > 4a22 (4.120)

the inequality is violated and the claim follows.

Summary

Let us summarize the results for the established discrete forms from the previous section in
Table 4.1. For the exact solutions the constructions of both Ishikawa [56] and Darbon [30] can
be applied.

# Regularization  Discr. form Exact Exp. Swap Fusion

1 Anisotropic TV |ru| (4.55) 3 3 3 3
2 Isotropic TV |ru| (4.56) 7 7 3 3
3 Isotropic |ru|2 (4.86) 3 7 3 3
4 Huber see (4.96) (4.97) 7 7 3 3
5 Weighted Isotropic g(|r(⇢ ⇤ u�)|)|ru|2 (4.94) 3 7 3 3
6 Weighted Iso. TV �(x)|ru| cf. (4.56) 7 7 3 3
7 Anisotr. ruTA(x)ru (4.105) 7 7 7 3

8 Anisotr. non-quadr.
p
ruTA(x)ru (4.113) 7 7 7 3

Table 4.1: Summary of first-order regularization functionals w.r.t. graph cut applicability in the
multilabel scenario.
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CHAPTER 5
Experimental Results and Discussion

In Section 4.9 of the previous chapter, we have introduced various continuous first-order regular-
ization models for the task of image denoising and stated discrete forms thereof. In this section,
we discuss the experimental contribution of this thesis and present numerical results obtained
by solving the discrete finite dimensional energies via graph cuts. On top of existing libraries
we have built a Matlab implementation of the graph constructions which is able to deal with the
discrete energies in both the Boolean and the multilabel MRF scenario. Moreover, it shall be
stressed that from this point on we exclusively discuss discrete energies.

For our experiments with the expansion and the swap algorithm, we relied on the multi-
label optimization framework developed by Boykov et al. [22].1 Our implementation of the
fusion move algorithm is built upon the BHS implementation by Rother et al. [98].2 Further-
more, it is noteworthy that all frameworks make use of the algorithm developed by Boykov and
Kolmogorov [18] to determine the maximum flow in the constructed network.3 Finally, we em-
phasize that the constructed flow networks have integer capacities and thus may lead to small
inaccuracies. All computations were run on an Intel Xeon E5520 (4 cores, 2.26GHz each) 12GB
machine.

Even though we performed experiments for all of the discrete energies listed in Section 4.9,
we only discuss and list the results for the following models:

1. anisotropic first-order regularization,

2. anisotropic total variational regularization, and

3. isotropic first-order regularization.

The first model (and its non-quadratic version) was approached with the fusion algorithm. The
second and the third were minimized with the expansion and the swap algorithm, respectively.

1The source code of the framework is publicly available at http://vision.csd.uwo.ca/code/.
2Available at http://pub.ist.ac.at/~vnk/software.html.
3Also available at http://pub.ist.ac.at/~vnk/software.html.
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In the first part of this chapter we explain our methodology with regard to test instance
creation and result computation. In the second part, we present the conducted experiments and
discuss the obtained results.

5.1 Methodology
Our experiments were performed on the basis of six commonly used test images from the field
of computer vision. These images are: Cameraman, Fish, House, Lenna4, Mandrill, and Pi-
rate.5 All images are grayscale images, i.e. L := {0, 1, . . . , 255}, and of size 150⇥150. The
undistorted images and their histograms are depicted in Figures A.1 and A.2, respectively, in the
Appendix.

For our experiments we created two sets of problem instances: the images in the first set
were artificially degraded by additive Gaussian noise with parameters µ = 0 and �2 = 0.01
whereas the test images in the second set were corrupted by Salt & Pepper noise with parameter
p = 0.1. The full characteristics of the generated instances can again be found in Table A.1 and
Table A.2 in the Appendix.

Let us denote by u0 the original (undistorted) discrete image, by u� the noisy discrete image,
and by u the restored discrete image, all of same size. For the input of each experiment we
obtained the following characteristics:

1. L
1 norm ku0 � u�k1,

2. L
2 norm ku0 � u�k2,

3. avg. L1 norm ku0�u�k1
len(u0) ,

4. avg. L2 norm ku0�u�k2
len(u0) ,

5. relative error r� :=
P

p
|u0

p�u�
p|

|L|�1 ,

6. avg. relative error r� := r
len(u0) ,

where len(u0) is the number of elements in u0. From the results of each experiment we calcu-
lated:

1. L
1 norm ku0 � uk1,

2. L
2 norm ku0 � uk2,

3. avg. L1 norm ku0�uk1
len(u0) ,

4. avg. L2 norm ku0�uk2
len(u0) ,

4We refer the reader to http://www.cs.cmu.edu/~chuck/lennapg/ for the historical background of
the image.

5Test images were taken from http://sipi.usc.edu/database/.
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5. relative error r :=
P

p
|u0

p�up|
|L|�1 ,

6. avg. relative error r := r
len(u0) .

5.2 Anisotropic First-Order Regularization

In our first set of experiments, we choose to approximate the discrete forms of the anisotropic
first-order regularization developed in Section 4.10. In order to minimize the discrete forms,
we implemented the fusion move algorithm. Recall that the energies arising from anisotropic
regularization in general result in nonsubmodular functions and thus can only be approximated.

In our first setting, we generated proposals from the initial image u� by adding Gaussian
white noise � and computing the convolution using the kernel matrix ⇢ := 1/9 ·J3, where J3 is a
3⇥3 matrix of ones. For details on the continuous and discrete convolution we refer to Scherzer
et al. [103, Sec. 9.5] and Winkler [116, Sec. 1.2 and 2.3], respectively. The proposed image is
then x1 := ⇢ ⇤ (u� + �) and should tend to generate smooth areas.

In a first run, we computed results for all combinations of data and regularization models for
all six test images. The fit-to-data was either the L

1 or the squared L
2 norm of the difference

between the restored and the observed image, i.e. u � u�. The regularization term was chosen
either to be the anisotropic (quadratic) or the anisotropic non-quadratic model. Due to the fast
convergence of the fusion algorithm, the maximum number of iterations was set to 20.

Our initial parameters are listed in Table 5.1.

Parameter Symbol Value

Weight decay in g(·) �
2 1

Convolution kernel ⇢ 1/9 · J3
Mean of proposal noise � µ 0
Variance of proposal noise � �

2 0.01

Table 5.1: Initial parameters.

In order to determine the optimal regularization parameter ↵ for every image and every pair
of data fidelity and regularization model, we obtained results for varying values of ↵. Starting
from an initially small value, we chose ↵ to increase by an order of magnitude in each iteration
(the range of ↵ was {10�4

, 10�3
, . . . , 104}). Figure 5.1 depicts restored images for increasing

values of the regularization parameter. For our further experiments we used the value of ↵
resulting in the lowest error regarding the L

2 distance between the restored image u and the
uncorrupted original image u0. For the sake of brevity we list only the determined parameters
for a subset of the test instances in Table 5.2. The full results are deferred to the Appendix.

However, we performed a series of experiments with the anisotropic regularization models
on the second set of test instances, which were degraded with Salt & Pepper noise, and found
that in our setting the model did not show capable of efficiently removing the noise.

In a second pass we ran our experiments again with the established parameters and adapted
the mollifier ⇢ used for both the computation of the matrix A (in both anisotropic regularization
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(a) ↵ = 0.1 (b) ↵ = 1 (c) ↵ = 10

(d) ↵ = 100 (e) ↵ = 1000 (f) ↵ = 10000

Figure 5.1: Varying values of ↵ (squared L
2, anisotropic).

Data fidelity Regularization Cameraman Fish House Lenna

L
1

Anisotropic 1 0.1 1 1
Squared L

2 10 10 10000 10

L
1

Anisotropic non-quadratic 10 10 100 10
Squared L

2 100 100 1000 1000

Table 5.2: Regularization parameter ↵ determined for the tested models and instances.

models) and the generation of the proposals. For this run we used a Gaussian 3⇥3 kernel matrix.
However, we found evidence that the Gaussian kernel matrix led to improvements both in the
L
2 error of the restored image and visual quality. The best results were obtained from using

the squared L
2 distance for the data term and a non-quadratic anisotropic regularization term.

The series is depicted in Figure 5.3. It is noteworthy that in this case the number of maximum
iterations was set to 100. On the other hand, we observed that Gaussian kernels of size larger
than 10⇥10 led to blurred undesirable solutions.

Moreover, we observed that in general the fusion algorithm tends to converge in our setting
after approximately 20 iterations and when run longer does not significantly improve the result
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(cf. the typical curve in Figure A.3(a) in the Appendix). In addition, we point out that with
our measurements we could not find any obvious criterion influencing the number of unlabeled
variables returned by the BHS algorithm. Nevertheless, for negligible values of ↵ the BHS
algorithm returned a complete labeling as expected.

(a) Original u0 (b) Noisy image u� (c) Restored image u (d) Error |u0 � u|

(e) Original u0 (f) Noisy image u� (g) Restored image u (h) Error |u0 � u|

(i) Original u0 (j) Noisy image u� (k) Restored image u (l) Error |u0 � u|

Figure 5.2: Gaussian degraded images restored by the anisotropic models.

5.3 Anisotropic Total Variational Regularization

In a second setting, we obtained results for both test sets by the discrete anisotropic total vari-
ation. Since the maximum flow algorithm our implementation is based on uses integer-valued
flows we adapted the model such that for parameter values ↵ < 1 a multiplicative constant
� := 1/↵ for the data term was introduced and ↵ set to 1, preserving the ratio between the data
and the regularization term.

This time we used for both test sets (Gaussian and Salt & Pepper noise) the L
1 distance for

the data term. As verified in Section 4.10, both terms fulfill the expansion condition and thus
can be approximated.
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(a) Original u0 (b) Noisy image u� (c) Restored image u (d) Error |u0 � u|

(e) Original u0 (f) Noisy image u� (g) Restored image u (h) Error |u0 � u|

(i) Original u0 (j) Noisy image u� (k) Restored image u (l) Error |u0 � u|

Figure 5.3: Gaussian degraded images restored by the non-quadratic anisotropic model with a
Gaussian kernel ⇢.

As before, we determined the regularization parameter ↵ for every image resulting in the
smallest L2 error of the restored image. The tested range of ↵ was {0.1, 0.2, . . . , 1, 1.5, 2}.
In Figure 5.4, we depict the inferred solutions for varying values of ↵. Figure A.3(b) in the
Appendix illustrates the L

2 error of the solution versus increasing (log) values of ↵. The full
results are again deferred to the Appendix.

Even though in our setting the anisotropic TV computed by the expansion algorithm is ca-
pable of efficiently smoothing large homogenous regions, it lacks in preserving small features
(such as the camera handle, cf. Figure 5.4). It is known that truncating the priors may yield
better results regarding discontinuities (cf. Veksler [111, 113]).

Figures 5.5 and 5.6 illustrate the results obtained with the anisotropic TV model. The right-
most image respectively depicts the difference between the restored and the original image. For
better visibility we depict the complement image.
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(a) ↵ = 0.3 (b) ↵ = 0.4 (c) ↵ = 0.5 (d) ↵ = 0.6

(e) ↵ = 0.7 (f) ↵ = 0.8 (g) ↵ = 0.9 (h) ↵ = 1

Figure 5.4: Varying values of ↵ for anisotropic total variation and Gaussian noise.

5.4 Isotropic Regularization
In the third series of experiments, we obtained numerical results for the isotropic regularization
model discussed in Section 4.9. As shown, the model can only be approximated with the swap
algorithm. For our experiments we used the squared L

2 norm for the data term and iterated upon
convergence (the maximum number of iterations was set to 100).

Again, we conducted experiments for both test sets and for several values of the regular-
ization parameter. We observed that the model is not as sensitive as the anisotropic TV model
regarding changes in the regularization parameter. Thus, we only include results for values of ↵
from the set {0.1, 0.5, 1, 1.5, 2}.

Figures 5.7 and 5.8 illustrate the obtained results. However, we found that the isotropic
model tends to blur the solution and in particular is not capable of effectively removing Salt &
Pepper noise.

5.5 Extremely Degraded Images
In order to demonstrate the power of the presented models, we chose to distort test images
heavily with Salt & Pepper noise and then reconstructed the image with the anisotropic TV
regularization model. Figure 5.9 shows the results. Even for an image which contained 90%
noise the expansion algorithm is able to yield an acceptable solution.
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(a) Original u0 (b) Noisy image u� (c) Restored image u (d) Error |u0 � u|

(e) Original u0 (f) Noisy image u� (g) Restored image u (h) Error |u0 � u|

(i) Original u0 (j) Noisy image u� (k) Restored image u (l) Error |u0 � u|

Figure 5.5: Gaussian degraded images restored by the anisotropic TV model.
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(a) Original u0 (b) Noisy image u� (c) Restored image u (d) Error |u0 � u|

(e) Original u0 (f) Noisy image u� (g) Restored image u (h) Error |u0 � u|

(i) Original u0 (j) Noisy image u� (k) Restored image u (l) Error |u0 � u|

Figure 5.6: Salt & Pepper degraded images restored by the anisotropic TV model.
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(a) Original u0 (b) Noisy image u� (c) Restored image u (d) Error |u0 � u|

(e) Original u0 (f) Noisy image u� (g) Restored image u (h) Error |u0 � u|

Figure 5.7: Gaussian degraded images restored by the isotropic model.

(a) Original u0 (b) Noisy image u� (c) Restored image u (d) Error |u0 � u|

(e) Original u0 (f) Noisy image u� (g) Restored image u (h) Error |u0 � u|

Figure 5.8: Salt & Pepper degraded images restored by the isotropic model.
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(a) Original u0 (b) Noisy image u� (p = 0.7) (c) Restored image u

(d) Original u0 (e) Noisy image u� (p = 0.7) (f) Restored image u

(g) Original u0 (h) Noisy image u� (p = 0.9) (i) Restored image u

Figure 5.9: Heavily distorted images reconstructed with the anisotropic TV model.
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CHAPTER 6
Conclusion and Future Work

In this thesis we have investigated the applicability of graph cut methods to continuous (convex)
first-order regularization functionals which are frequently used for the task of image denoising.

In Chapter 3 we have introduced stochastic models for image modeling and in particular
Markov random fields. Moreover, we presented a Bayesian justification for energy minimization
in order to infer the maximum a posterior estimate. As soon as an image is modeled as an MRF,
powerful inferences can be made. For instance, in image denoising one wants to find the true
intensity having observed some noisy image which might have been corrupted in the process of
image acquisition. The MAP estimate then gives the most likely explanation for the observed
data and allows the inference of a restored image. The main concept of this chapter was the
insight that by minimizing some energy function directly leads to the MAP estimate.

Moreover, in Chapter 4 we presented graph cut-based methods for energy minimization. We
discussed the direct correspondence between (quadratic) pseudo-Boolean functions and the cost
function of a graph cut in a flow network. Furthermore, we showed that such a (directed) cut
function is always submodular and thus a (quadratic) pseudo-Boolean function can be minimized
exactly with a graph cut if and only if it is submodular. We have seen how the important max-
flow min-cut theorem then allows the efficient computation of a minimum cut. As a central
result of this chapter, we showed how to relate MRF energies (and thus posterior probabilities)
to graph cut functions.

However, as soon as the energies increase in complexity either by violating submodularity or
by extending the range of labels (multilabel problem), the problem renders NP-hard. We gave
a proof for the NP-completeness of even very simple nonsubmodular Boolean MRF energies
and thus making approximations inevitable. For the multilabel problem we discussed so called
“move-making” algorithms: the expansion and the swap algorithm. In case the MRF energy is
nonsubmodular the fusion move can still be applied.

After establishing the basics, we addressed continuous first-order regularization functionals
for image denoising. For a subset of the functionals summarized by Scherzer et al. [103] we
investigated the applicability of graph cut-based methods. In particular, we have investigated a
discrete form of the anisotropic regularization model. As a theoretical result we found that our
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discrete form generalizes isotropic regularization and in general results in nonsubmodular ener-
gies. Moreover, we showed that such models can neither be approximated with the expansion
nor with the swap algorithm.

The experimental contribution of this thesis are graph constructions for the expansion, the
swap, and the fusion algorithm and moreover, we conducted several experiments. Our results
give evidence that even though the anisotropic regularization functionals can only be approxi-
mated, the fusion algorithm yields acceptable results for Gaussian degraded images and is capa-
ble of preserving object boundaries. Another advantage of this method is the fast convergence.

Nevertheless, the fact that only few interesting MRF energies can be minimized exactly
in polynomial time is very unsatisfying. Possible future work includes the investigation of
other, more complex graph problems such as the minimum-cost flow problem or as a variant
the minimum-cost maximum flow problem, for which polynomial-time algorithms exist. More-
over, the multi-commodity flow problem might be a suitable candidate for generalization.

Regarding the discussed discrete models future work may include the consideration of 8-
connected or 16-connected neighborhoods to incorporate higher-order energy potentials. More-
over, our result regarding the discrete anisotropic model is very general and should be subject to
further investigation. Finally, the effect of the proposal generation in the fusion algorithm should
be studied.
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APPENDIX A
Results

A.1 Test Images

(a) Cameraman (b) Fish (c) House

(d) Lenna (e) Mandrill (f) Pirate

Figure A.1: Test images used.
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(a) Cameraman (b) Fish (c) House

(d) Lenna (e) Mandrill (f) Pirate

Figure A.2: Histograms of the undistorted test images.

Instance ku0 � u�k1 ku0 � u�k2 ku0�u�k1/len(u0) ku0�u�k2/len(u0) r� r�

Cameraman 19.4950 0.1641 0.0009 0.0000 1720.1490 0.0765

Fish 18.8812 0.1598 0.0008 0.0000 1665.9882 0.0740

House 20.3844 0.1699 0.0009 0.0000 1798.6275 0.0799

Lenna 20.3170 0.1688 0.0009 0.0000 1792.6745 0.0797

Mandrill 20.4673 0.1703 0.0009 0.0000 1805.9373 0.0803

Pirate 20.3160 0.1695 0.0009 0.0000 1792.5843 0.0797

Table A.1: Characteristics of the degraded instances (additive Gaussian white noise, �2 = 0.01).

A.2 Results
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Instance ku0 � u�k1 ku0 � u�k2 ku0�u�k1/len(v) ku0�u�k2/len(v) r� r�

Cameraman 12.7663 0.2981 0.0006 0.0000 1126.4392 0.0501

Fish 12.6471 0.3143 0.0006 0.0000 1115.9216 0.0496

House 13.0100 0.2875 0.0006 0.0000 1147.9451 0.0510

Lenna 13.0480 0.2915 0.0006 0.0000 1151.2941 0.0512

Mandrill 12.9640 0.2818 0.0006 0.0000 1143.8784 0.0508

Pirate 12.3627 0.2830 0.0005 0.0000 1090.8275 0.0485

Table A.2: Characteristics of the degraded instances (Salt & Pepper noise, p = 0.1).

(a) Typical fusion move energy (x-axis: iteration, y-
axis: energy).

(b) L2 error vs. log(↵) plot of the results for the
Cameraman instance.

Figure A.3: Energy curves.
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